緒論:寫(xiě)作既是個(gè)人情感的抒發(fā),也是對(duì)學(xué)術(shù)真理的探索,歡迎閱讀由發(fā)表云整理的11篇數(shù)學(xué)情境論文范文,希望它們能為您的寫(xiě)作提供參考和啟發(fā)。
案例:“我”在某市購(gòu)物,甲商店提出的優(yōu)惠銷(xiāo)售方法是所有商品按九五折銷(xiāo)售,而乙商店提出的優(yōu)惠方法是凡一次購(gòu)滿(mǎn)500元可領(lǐng)取九折貴賓卡。請(qǐng)同學(xué)們幫老師出出主意,“我”究竟該到哪家商店購(gòu)物得到的優(yōu)惠更多?問(wèn)題提出后,學(xué)生們十分感興趣,紛紛議論,連平時(shí)數(shù)學(xué)成績(jī)較差的學(xué)生也躍躍欲試。學(xué)生們學(xué)習(xí)的主動(dòng)性很好地被調(diào)動(dòng)了起來(lái)。活勢(shì)形成,學(xué)生們?cè)诓恢挥X(jué)中運(yùn)用了分類(lèi)討論的思想方法。
曾有人說(shuō):“數(shù)學(xué)是思維的體操”。數(shù)學(xué)教學(xué)是思維活動(dòng)的教學(xué)。學(xué)生的思維活動(dòng)有賴(lài)于教師的循循善誘和精心的點(diǎn)撥和啟發(fā)。因此,課堂情境的創(chuàng)設(shè)應(yīng)以啟導(dǎo)學(xué)生思維為立足點(diǎn)。心理學(xué)研究表明:不好的思維情境會(huì)抑制學(xué)生的思維熱情,所以,課堂上不論是設(shè)計(jì)提問(wèn)、幽默,還是欣喜、競(jìng)爭(zhēng),都應(yīng)考慮活動(dòng)的啟發(fā)性,孔子曰:“不憤不啟,不悱不發(fā)”,如何使學(xué)生心理上有憤有悱,正是課堂情境創(chuàng)設(shè)所要達(dá)到的目的。
二、強(qiáng)化感受性:
情境教學(xué)往往會(huì)具有鮮明的形象性,使學(xué)生如入其境,可見(jiàn)可聞,產(chǎn)生真切感。只有感受真切,才能入境。要做到這一點(diǎn),可以用創(chuàng)設(shè)問(wèn)題情境來(lái)激發(fā)學(xué)生求知欲。創(chuàng)設(shè)問(wèn)題情境就是在講授內(nèi)容和學(xué)生求知心理間制造一種“不和諧”,將學(xué)生引入一種與問(wèn)題有關(guān)的情境中。心理學(xué)研究表明:“認(rèn)知矛盾時(shí)動(dòng)機(jī)的根源?!闭n堂上,教師創(chuàng)設(shè)認(rèn)知不協(xié)調(diào)的問(wèn)題情境,以激起學(xué)生研究問(wèn)題的動(dòng)機(jī),通過(guò)探索,消除劇烈矛盾,獲得積極的心理滿(mǎn)足。創(chuàng)設(shè)問(wèn)題情境應(yīng)注意要小而具體、新穎有趣、有啟發(fā)性,同時(shí)又有適當(dāng)?shù)碾y度。此外,還要注意問(wèn)題情境的創(chuàng)設(shè)必須與課本內(nèi)容保持相對(duì)一致,更不能運(yùn)用不恰當(dāng)?shù)谋扔?,不利于學(xué)生正確理解概念和準(zhǔn)確使用數(shù)學(xué)語(yǔ)言能力的形成。教師要善于將所要解決的課題寓于學(xué)生實(shí)際掌握的知識(shí)基礎(chǔ)之中,造成心理上的懸念,把問(wèn)題作為教學(xué)過(guò)程的出發(fā)點(diǎn),以問(wèn)題情境激發(fā)學(xué)生的積極性,讓學(xué)生在迫切要求下學(xué)習(xí)。
案例:在對(duì)“等腰三角形的判定”進(jìn)行教學(xué)設(shè)計(jì)時(shí),教師可以通過(guò)具體問(wèn)題的解決創(chuàng)設(shè)出如下誘人的問(wèn)題情境:
在ABC中,AB=AC,倘若不留神,它的一部分被墨水涂沒(méi)了,只留下了一條底邊BC和一個(gè)底角∠C,請(qǐng)問(wèn),有沒(méi)有辦法把原來(lái)的等腰三角形重新畫(huà)出來(lái)?學(xué)生先畫(huà)出殘余圖形并思索著如何畫(huà)出被墨水涂沒(méi)的部分。各種畫(huà)法出現(xiàn)了,有的學(xué)生是先量出∠C的度數(shù),再以BC為一邊,B點(diǎn)為頂點(diǎn)作∠B=∠C,B與C的邊相交得頂點(diǎn)A;也有的是取BC中點(diǎn)D,過(guò)D點(diǎn)作BC的垂線,與∠C的一邊相交得頂點(diǎn)A,這些畫(huà)法的正確性要用“判定定理”來(lái)判定,而這正是要學(xué)的課題。于是教師便抓住“所畫(huà)的三角形一定是等腰三角形嗎?”引出課題,再引導(dǎo)學(xué)生分析畫(huà)法的實(shí)質(zhì),并用幾何語(yǔ)言概括出這個(gè)實(shí)質(zhì),即“ABC中,若∠B=∠C,則AB=AC”。這樣,就由學(xué)生自己從問(wèn)題出發(fā)獲得了判定定理。接著,再引導(dǎo)學(xué)生根據(jù)上述實(shí)際問(wèn)題的啟示思考證明方法。
除創(chuàng)設(shè)問(wèn)題情境外,還可以創(chuàng)設(shè)新穎、驚愕、幽默、議論等各種教學(xué)情境,良好的情境可以使教學(xué)內(nèi)容觸及學(xué)生的情緒和意志領(lǐng)域,讓學(xué)生深切感受學(xué)習(xí)活動(dòng)的全過(guò)程并升化到自己精神的需要,成為提高課堂教學(xué)效率的重要手段。這正象贊可夫所說(shuō)的:“教學(xué)法一旦觸及學(xué)生的情緒和意志領(lǐng)域,這種教學(xué)法就能發(fā)揮高度有效的作用?!?/p>
三、著眼發(fā)展性:
數(shù)學(xué)是一門(mén)抽象和邏輯嚴(yán)密的學(xué)科,正由于這一點(diǎn)令相當(dāng)一部分學(xué)生望而卻步,對(duì)其缺乏學(xué)習(xí)熱情。情境教學(xué)當(dāng)然不能將所有的數(shù)學(xué)知識(shí)都用生活真實(shí)形象再現(xiàn)出來(lái),事實(shí)上情境教學(xué)的形象真切,并不是實(shí)體的復(fù)現(xiàn)或忠實(shí)的復(fù)制、照相式的再造,而是以簡(jiǎn)化的形體,暗示的手法,獲得與實(shí)體在結(jié)構(gòu)上對(duì)應(yīng)的形象,從而給學(xué)生以真切之感,在原有的知識(shí)上進(jìn)一步深入發(fā)展,以獲取新的知識(shí)。
案例:在學(xué)習(xí)完了平行四邊形判定定理之后,如何進(jìn)一步運(yùn)用這些定理去判定一個(gè)四邊形是否為平行四邊形的習(xí)題課上.我先帶領(lǐng)學(xué)生回顧平行四邊形的定義以及四條判定定理:
1、平行四邊形定義:兩組對(duì)邊分別平行的四邊形是平行四邊形。
2、平行四邊形判定定理:
(1)兩組對(duì)邊分別相等的四邊形是平行四邊形。
(2)對(duì)角線相互平分的四邊形是平行四邊形。
(3)兩組對(duì)角分別相等的四邊形是平行四邊形。
(4)一組對(duì)邊平行且相等的四邊形是平行四邊形。
分析從這五條判定方法結(jié)構(gòu)來(lái)看,平行四邊形定義和前三條判定定理的條件較單一,或相等、或平行,而第四條判定定理是相等與平行二者兼有,如果將它看作是定義和判定(1)中各取條件的一部分而得出的話,那么從定義和前三條判定定理中每?jī)蓚€(gè)取其中部分條件是否都能構(gòu)成平行四邊形的判定方法呢?這樣我創(chuàng)設(shè)了情境,根據(jù)對(duì)第四條判定定理的剖析,使學(xué)生用類(lèi)比的方法提出了猜想:
1.一組對(duì)邊平行且另一組對(duì)邊相等的四邊形是平行四邊形。
2.一組對(duì)邊平行且一組對(duì)角相等的四邊形是平行四邊形。
3.一組對(duì)邊平行且對(duì)角線交點(diǎn)平分某一條對(duì)角線的四邊形是平行四邊形。
4.一組對(duì)邊相等且對(duì)角線交點(diǎn)平分某一條對(duì)角線的四邊形是平行四邊形。
5.一組對(duì)邊相等且一組對(duì)角相等的四邊形是平行四邊形。
6.一組對(duì)角相等且連該兩頂點(diǎn)的對(duì)角線平分另一對(duì)角線的四邊形是平行四邊形。
7.一組對(duì)角相等且連該兩頂點(diǎn)的對(duì)角線被另一對(duì)角線平分的四邊形是平行四邊形。
在啟發(fā)學(xué)生得出上面的若干猜想之后,我又進(jìn)一步強(qiáng)調(diào)證明的重要性,以使學(xué)生形成嚴(yán)謹(jǐn)?shù)乃季S習(xí)慣,達(dá)到提高學(xué)生邏輯思維能力的目的,要求學(xué)生用所學(xué)的5種判定方法去一一驗(yàn)證這七條猜想結(jié)論的正確性。
經(jīng)過(guò)全體師生一齊分析驗(yàn)證,最終得出結(jié)論:七條猜想中有四條猜想是錯(cuò)誤的,另外三個(gè)正確猜想中的一個(gè)尚待給予證明。學(xué)生在老師的層層設(shè)問(wèn)下,參與了問(wèn)題探究的全過(guò)程。不僅對(duì)知識(shí)理解更透徹,掌握更牢固,而且從中受到觀察、猜想、分析與轉(zhuǎn)換等思維方法的啟迪,思維品質(zhì)獲得了培養(yǎng),同時(shí)學(xué)生也從探索的成功中感到喜悅,使學(xué)習(xí)數(shù)學(xué)的興趣得到了強(qiáng)化,知識(shí)得到了進(jìn)一步發(fā)展。
四、滲透教育性:
教師要傳授知識(shí),更要育人。如何在數(shù)學(xué)教育中,對(duì)學(xué)生進(jìn)行思想道德教育,在情境教學(xué)中也得到了較好的體現(xiàn)。法國(guó)著名數(shù)學(xué)家包羅•朗之萬(wàn)曾說(shuō):“在數(shù)學(xué)教學(xué)中,加入歷史具有百利而無(wú)一弊的?!蔽覈?guó)是數(shù)學(xué)的故鄉(xiāng)之一,中華民族有著光輝燦爛的數(shù)學(xué)史,如果將數(shù)學(xué)科學(xué)史滲透到數(shù)學(xué)教學(xué)中,可以拓寬學(xué)生的視野,進(jìn)行愛(ài)國(guó)主義教育,對(duì)于增強(qiáng)民族自信心,提高學(xué)生素質(zhì),激勵(lì)學(xué)生奮發(fā)向上,形成愛(ài)科學(xué),學(xué)科學(xué)的良好風(fēng)氣有著重要作用。
教師應(yīng)根據(jù)教材特點(diǎn),適應(yīng)地選擇數(shù)學(xué)科學(xué)史資料,有針對(duì)性地進(jìn)行教學(xué)
案例:圓周率π是數(shù)學(xué)中的一個(gè)重要常數(shù),是圓的周長(zhǎng)與其直徑之比。為了回答這個(gè)比值等于多少,一代代中外數(shù)學(xué)家鍥而不舍,不斷探索,付出了艱辛的勞動(dòng),其中我國(guó)的數(shù)學(xué)家祖沖之取得了“當(dāng)時(shí)世界上最先進(jìn)的成就”。為了讓同學(xué)們了解這一成就的意義,從中得到啟迪,我選配了有關(guān)的史料,作了一次讀后小結(jié)。先簡(jiǎn)單介紹發(fā)展過(guò)程:最初一些文明古國(guó)均取π=3,如我國(guó)《周髀算經(jīng)》就說(shuō)“徑一周三”,后人稱(chēng)之為“古率”。人們通過(guò)利用經(jīng)驗(yàn)數(shù)據(jù)π修正值,例如古埃及人和古巴比倫人分別得到π=3.1605和π=3.125。后來(lái)古希臘數(shù)學(xué)家阿基米德(公元前287~212年)利用圓內(nèi)接和外接正多邊形來(lái)求圓周率π的近似值,得到當(dāng)時(shí)關(guān)于π的最好估值約為:3.1409<π<3.1429;此后古希臘的托勒玫約在公元150年左右又進(jìn)一步求出π=3.141666。我國(guó)魏晉時(shí)代數(shù)學(xué)家劉微(約公元3~4世紀(jì))用圓的內(nèi)接正多邊形的“弧矢割圓術(shù)”計(jì)算π值。當(dāng)邊數(shù)為192時(shí),得到3.141024<π<3.142704。后來(lái)把邊數(shù)增加到3072邊時(shí),進(jìn)一步得到π=3.14159,這比托勒玫的結(jié)果又有了進(jìn)步。待到南北朝時(shí),祖沖之(公元429~500年)更上一層樓,計(jì)算出π的值在3.1415926與3.1415927之間。求出了準(zhǔn)確到七位小數(shù)π的值。我國(guó)的這一精確度,在長(zhǎng)達(dá)一千年的時(shí)間中,一直處于世界領(lǐng)先地位,這一記錄直到公元1429年左右才被中亞細(xì)亞的數(shù)學(xué)家阿爾•卡西打破,他準(zhǔn)確地計(jì)算到小數(shù)點(diǎn)后第十六位。這樣可使同學(xué)們明白,人類(lèi)對(duì)圓周率認(rèn)識(shí)的逐步深入,是中外一代代數(shù)學(xué)家不斷努力的結(jié)果。我國(guó)不僅以古代的四大發(fā)明-------火藥、指南針、造紙、印刷術(shù)對(duì)世界文明的進(jìn)步起了巨大的作用,而且在數(shù)學(xué)方面也曾在一些領(lǐng)域內(nèi)取得過(guò)遙遙領(lǐng)先的地位,創(chuàng)造過(guò)多項(xiàng)“世界紀(jì)錄”,祖沖之計(jì)算出的圓周率就是其中的一項(xiàng)。接著我再說(shuō)明,我國(guó)的科學(xué)技術(shù)只是近幾百年來(lái),由于封建社會(huì)的日趨沒(méi)落,才逐漸落伍。如今在向四個(gè)現(xiàn)代化進(jìn)軍的新中,趕超世界先進(jìn)水平的歷史重任就責(zé)無(wú)旁貸地落在同學(xué)們的肩上。我們要下定決心,努力學(xué)習(xí),奮發(fā)圖強(qiáng)。
為了使同學(xué)們認(rèn)識(shí)科學(xué)的艱辛以及人類(lèi)鍥而不舍的探索精神,我還進(jìn)一步介紹:同學(xué)們都知道π是無(wú)理數(shù),可是在18世紀(jì)以前,“π是有理數(shù)還是無(wú)理數(shù)?”一直是許多數(shù)學(xué)家研究的課題之一。直到1767年蘭伯脫才證明了是無(wú)理數(shù),圓滿(mǎn)地回答了這個(gè)問(wèn)題。然而人類(lèi)對(duì)于π值的進(jìn)一步計(jì)算并沒(méi)有終止。例如1610年德國(guó)人路多夫根據(jù)古典方法,用262邊形計(jì)算π到小數(shù)點(diǎn)后第35位。他把自己一生的大部分時(shí)間花在這項(xiàng)工作上。后人為了紀(jì)念他,就把這個(gè)數(shù)刻在它的墓碑上。至今圓周率被德國(guó)人稱(chēng)為“路多夫數(shù)”。1873年英國(guó)的向客斯計(jì)算π到707位小數(shù),1944年英國(guó)曼徹斯特大學(xué)的弗格森分析了向克斯計(jì)算的結(jié)果后,產(chǎn)生了懷疑并決定重新算一次。他從1944年5月到1945年5月用了一整年的時(shí)間來(lái)做這項(xiàng)工作,結(jié)果發(fā)現(xiàn)向克斯的707位小數(shù)只有前面527位是正確的。后來(lái)有了電子計(jì)算機(jī),有人已經(jīng)算到第十億位。同學(xué)們要問(wèn)計(jì)算如此高精度的π值究竟有什么意義?專(zhuān)家們認(rèn)為,至少可以由此來(lái)研究π的小數(shù)出現(xiàn)的規(guī)律。更重要的是對(duì)π認(rèn)識(shí)的新突破進(jìn)一步說(shuō)明了人類(lèi)對(duì)自然的認(rèn)識(shí)是無(wú)窮無(wú)盡的。幾千年來(lái),沒(méi)有哪一個(gè)數(shù)比圓周率π更吸引人了。根據(jù)這一段教材的特點(diǎn),適當(dāng)選配數(shù)學(xué)史料,采用讀后小結(jié)的方式,不僅可以使學(xué)生加深對(duì)課文的理解,而且人類(lèi)對(duì)圓周率認(rèn)識(shí)不斷加深的過(guò)程也是學(xué)生深受感染,興趣盎然,這對(duì)培養(yǎng)學(xué)生獻(xiàn)身科學(xué)的探索精神有著積極的意義。
五、貫穿實(shí)踐性:
情境教學(xué)注重“情感”,又提倡“學(xué)以致用”,努力使二者有機(jī)地統(tǒng)一起來(lái),在特定的情境中和熱烈的情感驅(qū)動(dòng)下進(jìn)行實(shí)際應(yīng)用,同時(shí)還通過(guò)實(shí)際應(yīng)用來(lái)強(qiáng)化學(xué)習(xí)成功所帶來(lái)的快樂(lè)。數(shù)學(xué)教學(xué)也應(yīng)以訓(xùn)練學(xué)生能力為手段,貫穿實(shí)踐性,把現(xiàn)在的學(xué)習(xí)和未來(lái)的應(yīng)用聯(lián)系起來(lái),并注重學(xué)生的應(yīng)用操作和能力的培養(yǎng)。我們充分利用情境教學(xué)特有的功能,在拓展的寬闊的數(shù)學(xué)教學(xué)空間里,創(chuàng)設(shè)既帶有情感色彩,又富有實(shí)際價(jià)值的操作情境,讓學(xué)生扮演測(cè)量員,統(tǒng)計(jì)員進(jìn)行實(shí)地調(diào)查,搜集數(shù)據(jù),制統(tǒng)計(jì)圖,寫(xiě)調(diào)查報(bào)告,其教學(xué)效果可謂“百問(wèn)不如一做”,學(xué)生產(chǎn)生頓悟,求知欲得到滿(mǎn)足更加樂(lè)意投入到新的學(xué)習(xí)情境中去了。同時(shí)對(duì)學(xué)生思維能力、表達(dá)能力、動(dòng)手能力、想象能力、提出問(wèn)題和解決問(wèn)題的能力,甚至交際能力、應(yīng)變能力等等,都得到了較好的培養(yǎng)和訓(xùn)練。
案例:“三角形內(nèi)角和定理”就可以通過(guò)實(shí)踐操作的辦法來(lái)創(chuàng)設(shè)教學(xué)情境。學(xué)生的認(rèn)知結(jié)構(gòu)中,已經(jīng)有了角的有關(guān)概念,三角形的概念,還具有同位角、內(nèi)錯(cuò)角相等等有關(guān)平行線的性質(zhì)。這些都是學(xué)習(xí)新知識(shí)的“固著點(diǎn)”,但由于它們與“三角形內(nèi)角和定理”之間的邏輯聯(lián)系并不十分明顯,大部分同學(xué)都難以想到要對(duì)三角形的三個(gè)內(nèi)角之和進(jìn)行一番研究,這種情況下,我們可以創(chuàng)設(shè)這樣的數(shù)學(xué)情境:首先,在回顧三角形概念的基礎(chǔ)上,提出:“三角形的三個(gè)內(nèi)角會(huì)不會(huì)存在某種關(guān)系呢?”這是綱領(lǐng)性提問(wèn),對(duì)學(xué)生的思維還達(dá)不到確定的導(dǎo)向作用,學(xué)生可能會(huì)對(duì)角與角的相等、不等、兩角之和(差)與第三個(gè)角的大小比較等等問(wèn)題進(jìn)行研究,當(dāng)發(fā)現(xiàn)這些問(wèn)題只對(duì)某些特殊三角形有意義時(shí),他們的思維可能會(huì)指向“三個(gè)內(nèi)角的和是否有一定的規(guī)律?”我適時(shí)地提出:“請(qǐng)同學(xué)們畫(huà)一些三角形(包括銳角、直角、鈍角三角形),再用量角器量出三個(gè)角,觀察一下各三角形的三個(gè)內(nèi)角有什么聯(lián)系。”經(jīng)測(cè)量、計(jì)算,學(xué)生發(fā)現(xiàn)三個(gè)內(nèi)角的和都在180°左右。我再進(jìn)一步提出:“由于具體測(cè)量會(huì)有誤差,但和數(shù)都在180°左右,三角形的三個(gè)內(nèi)角之和是否為180°呢?請(qǐng)同學(xué)們把三個(gè)角拼在一起,看一看,構(gòu)成了一個(gè)怎樣的角?”學(xué)生在完成這一實(shí)驗(yàn)后發(fā)現(xiàn),三個(gè)內(nèi)角拼在一起構(gòu)成一個(gè)平角。經(jīng)過(guò)上述兩步實(shí)驗(yàn),提出“三角形的三個(gè)內(nèi)角之和為180°”的猜想就水到渠成了。接著,我指出了實(shí)驗(yàn)操作的局限性,并要求學(xué)生給出嚴(yán)格的邏輯證明。在尋找證明方法時(shí),我提出:“觀察拼接圖形,從中能得到什么啟示?”學(xué)生可憑借實(shí)踐操作時(shí)的感性經(jīng)驗(yàn),找到證明方法。實(shí)踐操作不但使學(xué)生獲得了定理的猜想,而且受到了證明定理的啟發(fā),顯示了很大的智力價(jià)值。又如:我在初三復(fù)習(xí)列方程解應(yīng)用題時(shí),為了讓學(xué)生明白學(xué)數(shù)學(xué)的主要目的是要培養(yǎng)思維和掌握解決問(wèn)題的能力,在課的最后出了一道開(kāi)放型命題:
將一個(gè)50米長(zhǎng)30米寬的矩形空地改造成為花壇,要求花壇所占的面積,恰為空地面積的一半。試給出你的設(shè)計(jì)方案(要求:美觀,合理,實(shí)用,要給出詳細(xì)數(shù)據(jù))。這題是一道中考題,是應(yīng)用數(shù)學(xué)的典型實(shí)例,既培養(yǎng)學(xué)生解決問(wèn)題的能力又開(kāi)發(fā)他們的創(chuàng)新思維。學(xué)生討論得十分激烈,不斷有新的創(chuàng)意冒出來(lái),有的因無(wú)法操作而被別人否定,也有不少十分不錯(cuò)的設(shè)想。通過(guò)這次討論,我覺(jué)得每個(gè)學(xué)生都是有潛力可挖的,解決問(wèn)題的能力雖有強(qiáng)弱,但我們教師更應(yīng)該多培養(yǎng)多點(diǎn)撥多激勵(lì),以增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的自信心。
創(chuàng)設(shè)情境教學(xué)的主要方式
一,創(chuàng)設(shè)應(yīng)用性情境,引導(dǎo)學(xué)生自己發(fā)現(xiàn)數(shù)學(xué)命題(公理、定理、性質(zhì)、公式)
案例1在“均值不等式”一節(jié)的教學(xué)中,可設(shè)計(jì)如下兩個(gè)實(shí)際應(yīng)用情境,引導(dǎo)學(xué)生從中發(fā)現(xiàn)關(guān)于均值不等式的定理及其推論.
①某商店在節(jié)前進(jìn)行商品降價(jià)酬賓銷(xiāo)售活動(dòng),擬分兩次降價(jià).有三種降價(jià)方案:甲方案是第一次打p折銷(xiāo)售,第二次打q折銷(xiāo)售;乙方案是第一次打q折銷(xiāo)售,第二次找p折銷(xiāo)售;丙方案是兩次都打(p+q)/2折銷(xiāo)售.請(qǐng)問(wèn):哪一種方案降價(jià)較多?
②今有一臺(tái)天平兩臂之長(zhǎng)略有差異,其他均精確.有人要用它稱(chēng)量物體的重量,只須將物體放在左、右兩個(gè)托盤(pán)中各稱(chēng)一次,再將稱(chēng)量結(jié)果相加后除以2就是物體的真實(shí)重量.你認(rèn)為這種做法對(duì)不對(duì)?如果不對(duì)的話,你能否找到一種用這臺(tái)天平稱(chēng)量物體重量的正確方法?
學(xué)生通過(guò)審題、分析、討論,對(duì)于情境①,大都能歸結(jié)為比較pq與((p+q)/2)2大小的問(wèn)題,進(jìn)而用特殊值法猜測(cè)出pq≤((p+q)/2)2,即可得p2+q2≥2pq.對(duì)于情境②,可安排一名學(xué)生上臺(tái)講述:設(shè)物體真實(shí)重量為G,天平兩臂長(zhǎng)分別為l1、l2,兩次稱(chēng)量結(jié)果分別為a、b,由力矩平衡原理,得l1G=l2a,l2G=l1b,兩式相乘,得G2=ab,由情境①的結(jié)論知ab≤((a+b)/2)2,即得(a+b)/2≥,從而回答了實(shí)際問(wèn)題.此時(shí),給出均值不等式的兩個(gè)定理,已是水到渠成,其證明過(guò)程完全可以由學(xué)生自己完成.
以上兩個(gè)應(yīng)用情境,一個(gè)是經(jīng)濟(jì)生活中的情境,一個(gè)是物理中的情境,貼近生活,貼近實(shí)際,給學(xué)生創(chuàng)設(shè)了一個(gè)觀察、聯(lián)想、抽象、概括、數(shù)學(xué)化的過(guò)程.在這樣的問(wèn)題情境下,再注意給學(xué)生動(dòng)手、動(dòng)腦的空間和時(shí)間,學(xué)生一定會(huì)想學(xué)、樂(lè)學(xué)、主動(dòng)學(xué).
二,創(chuàng)設(shè)趣味性情境,引發(fā)學(xué)生自主學(xué)習(xí)的興趣
案例2在“等比數(shù)列”一節(jié)的教學(xué)時(shí),可創(chuàng)設(shè)如下有趣的情境引入等比數(shù)列的概念:
阿基里斯(希臘神話中的善跑英雄)和烏龜賽跑,烏龜在前方1里處,阿基里斯的速度是烏龜?shù)?0倍,當(dāng)它追到1里處時(shí),烏龜前進(jìn)了1/10里,當(dāng)他追到1/10里,烏龜前進(jìn)了1/100里;當(dāng)他追到1/100里時(shí),烏龜又前進(jìn)了1/1000里……
①分別寫(xiě)出相同的各段時(shí)間里阿基里斯和烏龜各自所行的路程;
②阿基里斯能否追上烏龜?
讓學(xué)生觀察這兩個(gè)數(shù)列的特點(diǎn)引出等比數(shù)列的定義,學(xué)生興趣十分濃厚,很快就進(jìn)入了主動(dòng)學(xué)習(xí)的狀態(tài).
三,創(chuàng)設(shè)開(kāi)放性情境,引導(dǎo)學(xué)生積極思考
案例3直線y=2x+m與拋物線y=x2相交于A、B兩點(diǎn),________,求直線AB的方程.(需要補(bǔ)充恰當(dāng)?shù)臈l件,使直線方程得以確定)
此題一出示,學(xué)生的思維便很活躍,補(bǔ)充的條件形形.例如:
①|AB|=;②若O為原點(diǎn),∠AOB=90°;
③AB中點(diǎn)的縱坐標(biāo)為6;④AB過(guò)拋物線的焦點(diǎn)F.
涉及到的知識(shí)有韋達(dá)定理、弦長(zhǎng)公式、中點(diǎn)坐標(biāo)公式、拋物線的焦點(diǎn)坐標(biāo),兩直線相互垂直的充要條件等等,學(xué)生實(shí)實(shí)在在地進(jìn)入了“狀態(tài)”.四,創(chuàng)設(shè)直觀性圖形情境,引導(dǎo)學(xué)生深刻理解數(shù)學(xué)概念
案例4“充要條件”是高中數(shù)學(xué)中的一個(gè)重要概念,并且是教與學(xué)的一個(gè)難點(diǎn).若設(shè)計(jì)如下四個(gè)電路圖,視“開(kāi)關(guān)A的閉合”為條件A,“燈泡B亮”為結(jié)論B,給充分不必要條件、充分必要條件、必要不充分條件、既不充分又不必要條件以十分貼切、形象的詮釋?zhuān)瑒t使學(xué)生興趣盎然,對(duì)“充要條件”的概念理解得入木三分.
五,創(chuàng)設(shè)新異懸念情境,引導(dǎo)學(xué)生自主探究
案例5在“拋物線及其標(biāo)準(zhǔn)方程”一節(jié)的教學(xué)中,引出拋物線定義“平面上與一個(gè)定點(diǎn)F和一條定直線l的距離相等的點(diǎn)的軌跡叫做拋物線”之后,設(shè)置這樣的問(wèn)題情境:初中已學(xué)過(guò)的一元二次函數(shù)的圖象就是拋物線,而今定義的拋物線與初中已學(xué)的拋物線從字面上看不一致,它們之間一定有某種內(nèi)在聯(lián)系,你能找出這種內(nèi)在的聯(lián)系嗎?
此問(wèn)題問(wèn)得新奇,問(wèn)題的結(jié)論應(yīng)該是肯定的,而課本中又無(wú)解釋?zhuān)@自然會(huì)引起學(xué)生探索其中奧秘的欲望.此時(shí),教師注意點(diǎn)撥:我們應(yīng)該由y=x2入手推導(dǎo)出曲線上的動(dòng)點(diǎn)到某定點(diǎn)和某定直線的距離相等,即可導(dǎo)出形如動(dòng)點(diǎn)P(x,y)到定點(diǎn)F(x0,y0)的距離等于動(dòng)點(diǎn)P(x,y)到定直線l的距離.大家試試看!學(xué)生紛紛動(dòng)筆變形、拚湊,教師巡視后可安排一學(xué)生板演并進(jìn)行講述:
x2=y(tǒng)
x2+y2=y(tǒng)+y2
x2+y2-(1/2)y=y(tǒng)2+(1/2)y
x2+(y-1/4)2=(y+1/4)2
=|y+14|.
它表示平面上動(dòng)點(diǎn)P(x,y)到定點(diǎn)F(0,1/4)的距離正好等于它到直線y=-1/4的距離,完全符合現(xiàn)在的定義.
這個(gè)教學(xué)環(huán)節(jié)對(duì)訓(xùn)練學(xué)生的自主探究能力,無(wú)疑是非常珍貴的.
六,創(chuàng)設(shè)疑惑陷阱情境,引導(dǎo)學(xué)生主動(dòng)參與討論
案例6雙曲線x2/25-y2/144=1上一點(diǎn)P到右焦點(diǎn)的距離是5,則下面結(jié)論正確的是().
A.P到左焦點(diǎn)的距離為8
B.P到左焦點(diǎn)的距離為15
C.P到左焦點(diǎn)的距離不確定
D.這樣的點(diǎn)P不存在
教學(xué)時(shí),根據(jù)學(xué)生平時(shí)練習(xí)的反饋信息,有意識(shí)地出示如下兩種錯(cuò)誤解法:
錯(cuò)解1.設(shè)雙曲線的左、右焦點(diǎn)分別為F1、F2,由雙曲線的定義得
|PF1|-|PF2|=±10.
|PF2|=5,
|PF1|=|PF2|+10=15,故正確的結(jié)論為B.
錯(cuò)解2.設(shè)P(x0,y0)為雙曲線右支上一點(diǎn),則
|PF2|=ex0-a,由a=5,|PF2|=5,得ex0=10,
|PF1|=ex0+a=15,故正確結(jié)論為B.
然后引導(dǎo)學(xué)生進(jìn)行討論辨析:若|PF2|=5,|PF1|=15,則|PF1|+|PF2|=20,而|F1F2|=2c=26,即有|PF1|+|PF2|<|F1F2|,這與三角形兩邊之和大于第三邊矛盾,可見(jiàn)這樣的點(diǎn)P是不存在的.因此,正確的結(jié)論應(yīng)為D.
進(jìn)行上述引導(dǎo),讓學(xué)生比較定義,找出了產(chǎn)生錯(cuò)誤的在原因即是忽視了雙曲線定義中的限制條件,所以除了考慮條件||PF1|-|PF2||=2a,還要注意條件a<c和|PF1|+|PF2|≥|F1F2|.
通過(guò)上述問(wèn)題的辨析,不僅使學(xué)生從“陷阱”中跳出來(lái),增強(qiáng)了防御“陷阱”的經(jīng)驗(yàn),更主要地是能使學(xué)生參與討論,在討論中自覺(jué)地辨析正誤,取得學(xué)習(xí)的主動(dòng)權(quán).
總之,切實(shí)掌握好創(chuàng)設(shè)情境教學(xué)的原則、重視創(chuàng)設(shè)情境教學(xué)過(guò)程的特性,合理應(yīng)用創(chuàng)設(shè)情境教學(xué)的方式,充分重視“情境教學(xué)”在課堂教學(xué)中的作用,通過(guò)精心設(shè)計(jì)問(wèn)題情境,不斷激發(fā)學(xué)習(xí)動(dòng)機(jī),使學(xué)生經(jīng)常處于“憤悱”的狀態(tài)中,給學(xué)生提供學(xué)習(xí)的目標(biāo)和思維的空間,學(xué)生自主學(xué)習(xí)才能真正成為可能.在日常的教學(xué)工作中,不忘經(jīng)常創(chuàng)設(shè)數(shù)學(xué)情境,引導(dǎo)學(xué)生自主學(xué)習(xí),動(dòng)機(jī)、興趣、情感、意志、性格等非智力因素起著關(guān)鍵的作用.把智力因素與非智力因素有機(jī)地結(jié)合起來(lái),充分調(diào)動(dòng)學(xué)生認(rèn)知的、心理的、生理的、情感的、行為的、價(jià)值的等方面的因素,讓學(xué)生進(jìn)入一種全新的情境境界,學(xué)生自主學(xué)習(xí)才能達(dá)到比較好的效果.這就需要在課堂教學(xué)中,做到師生融洽,感情交流,充分尊重學(xué)生人格,關(guān)心學(xué)生的發(fā)展,營(yíng)造一個(gè)民主、平等、和諧的氛圍,在認(rèn)知和情意兩個(gè)領(lǐng)域的有機(jī)結(jié)合上,促進(jìn)學(xué)生的全面發(fā)展.
參考文獻(xiàn):
1、皮連生《學(xué)與教的心理學(xué)》(華東師范大學(xué)出版社1997年)
2、柳斌《學(xué)校教育科研全書(shū)》(九州圖書(shū)出版社,人民日?qǐng)?bào)出版社1998年)
3、肖柏榮《數(shù)學(xué)教育設(shè)計(jì)的藝術(shù)》(《數(shù)學(xué)通報(bào)》1996年10月)
4、章建躍《關(guān)于課堂教學(xué)中設(shè)置問(wèn)題情境的幾個(gè)問(wèn)題》(《數(shù)學(xué)通報(bào)》1994年6月)
5、盛志軍《今天,我沒(méi)有完成授課計(jì)劃》(《數(shù)學(xué)教學(xué)》2004年第11期)
6、馮克誠(chéng)《中學(xué)數(shù)學(xué)研究:3+x中學(xué)成功教法體系⑧、⑨》(內(nèi)蒙古出版社,2000年9月)
7、錢(qián)軍光、過(guò)大維《從錯(cuò)誤中發(fā)現(xiàn)、在探索中建構(gòu)》(《數(shù)學(xué)教學(xué)》2004年第10期)
二、數(shù)學(xué)問(wèn)題生活化生活中處處是數(shù)學(xué)
教師在教學(xué)過(guò)程中要善于借用生活素材,將數(shù)學(xué)學(xué)習(xí)與生活有機(jī)結(jié)合起來(lái),使枯燥的數(shù)學(xué)問(wèn)題生活化,讓學(xué)生從中感受到數(shù)學(xué)與生活的聯(lián)系,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,使其積極主動(dòng)地參與到課堂教學(xué)活動(dòng)中。例如,在教學(xué)“均值不等式”時(shí),我是這樣設(shè)計(jì)問(wèn)題的:某商場(chǎng)在春節(jié)期間,為了招攬更多顧客,特進(jìn)行商品降價(jià)活動(dòng),擬定了三種方案,第一種方案是第一次先打p折,然后再打q折;第二種方案是先打q折,再打p折;第三種方案是兩次都打p折。請(qǐng)你幫助分析哪種方案降價(jià)較多?因?yàn)閱?wèn)題與生活實(shí)際聯(lián)系緊密,立即吸引了學(xué)生的注意力。學(xué)生自己動(dòng)腦思考,從而提高了思維能力。又如,在教學(xué)“等比數(shù)列”時(shí),教師可創(chuàng)設(shè)如下有趣的問(wèn)題情境,引入等比數(shù)列的概念。兔子和烏龜在賽跑,烏龜在前方1里處,兔子的速度是烏龜?shù)?0倍,當(dāng)兔子追到1里處時(shí),烏龜前進(jìn)了1/10里,當(dāng)兔子追到1/10里,烏龜前進(jìn)了1/100里;當(dāng)兔子追到1/100里時(shí),烏龜又前進(jìn)了1/1000里……①分別寫(xiě)出相同的各段時(shí)間里兔子和烏龜各自所行的路程;②兔子能否追上烏龜?教師讓學(xué)生觀察這兩個(gè)數(shù)列的特點(diǎn),引出等比數(shù)列的定義,學(xué)生興趣十分濃厚,很快就進(jìn)入了主動(dòng)學(xué)習(xí)的狀態(tài)。
三、問(wèn)題解決生活化數(shù)學(xué)源于生活又服務(wù)于生活
我們學(xué)習(xí)數(shù)學(xué)的最終目的就是能運(yùn)用所掌握的數(shù)學(xué)知識(shí)和數(shù)學(xué)方法去觀察、分析和解決生活中遇到的問(wèn)題,形成一定的應(yīng)用技能。比如,在教學(xué)“一元一次方程”時(shí),我提出了這樣一個(gè)生活化的問(wèn)題:某中學(xué)組織初一學(xué)生春游,原計(jì)劃租用45座客車(chē)若干輛,但有15人沒(méi)有座位;如果租用同樣數(shù)量的60座客車(chē),則多出一輛,且其余客車(chē)恰好坐滿(mǎn)。已知45座客車(chē)日租金為每輛220元,60座客車(chē)日租金為每輛300元。試問(wèn):(1)初一年級(jí)人數(shù)是多少?原計(jì)劃租用45座客車(chē)多少輛?(2)要使每個(gè)學(xué)生都有座位,怎樣租用更合算?這樣,讓學(xué)生解決實(shí)際生活中的問(wèn)題,即可以激發(fā)學(xué)生的學(xué)習(xí)興趣,又能培養(yǎng)他們的發(fā)散思維和創(chuàng)新能力。四、練習(xí)設(shè)計(jì)生活化練習(xí)是學(xué)生掌握和鞏固所學(xué)新知識(shí)的基本方法。如果教師只是單純地提供給學(xué)生相應(yīng)的習(xí)題讓學(xué)生練習(xí),學(xué)生就會(huì)覺(jué)得枯燥,只是機(jī)械地解決問(wèn)題。如果我們提供的問(wèn)題與生活密切聯(lián)系,讓學(xué)生運(yùn)用所學(xué)的知識(shí)解決生活實(shí)際問(wèn)題,就會(huì)使學(xué)生感受到數(shù)學(xué)在生活中的價(jià)值,從而激發(fā)他們的學(xué)習(xí)興趣。比如,在教學(xué)“二元一次方程”時(shí),我設(shè)計(jì)了這樣的數(shù)學(xué)問(wèn)題:(1)國(guó)家規(guī)定存款利息的納稅辦法是,利息稅=利息×20%,儲(chǔ)戶(hù)取款時(shí)由銀行代扣代收。若銀行一年定期儲(chǔ)蓄的年利率為2.25%,某儲(chǔ)戶(hù)取出一年到期的本金及利息時(shí),扣除了利息稅36元,則銀行向該儲(chǔ)戶(hù)支付的現(xiàn)金是多少元?(2)小明家準(zhǔn)備裝修一套新住房,若甲、乙兩個(gè)裝飾公司合作6周完成,需工錢(qián)5.2萬(wàn)元;若甲公司單獨(dú)做4周后,剩下的由乙公司來(lái)做,還需9周完成,需工錢(qián)4.8萬(wàn)元。若只選一個(gè)公司單獨(dú)完成,從節(jié)約開(kāi)支的角度考慮,小明家應(yīng)選甲公司還是乙公司?請(qǐng)你說(shuō)明理由。通過(guò)這些練習(xí)能夠讓學(xué)生感受到身邊隨處可見(jiàn)數(shù)學(xué)問(wèn)題,我們只有學(xué)好數(shù)學(xué),才能解決這些問(wèn)題。
Abstract:Mathematicsteachingsituation’sestablishment,isreferstomathematicsteachingpresentstothecoursecontentusesthespecificmethod,achievesstimulatesthestudenttoassociate,theimaginationonowninitiative,positivelythethoughtthatobtainssomekindandthenewstudycontentrelatedimageorthethoughtachievement;Orcausesthestudenttohavesomekindofemotionexperience.Theconstructionprinciplebelievedthatthestudyistheknowledgeacquisitionprocess,theknowledgeisnotteachesthroughtheteacherobtains,butisthelearnerundercertainsituation,withtheaidofotherperson’shelp,usestheessentialstudymaterial,obtainsthroughthemeaningfulconstructionway.
keyword:Mathematicssituationteachingestablishmentestablishmentquestion
前言
《數(shù)學(xué)課程標(biāo)準(zhǔn)》也提出:數(shù)學(xué)學(xué)習(xí)“不僅要考慮數(shù)學(xué)自身的特點(diǎn),更應(yīng)遵循學(xué)生學(xué)習(xí)數(shù)學(xué)的心理規(guī)律,強(qiáng)調(diào)從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā)”,這充分說(shuō)明數(shù)學(xué)教學(xué)中創(chuàng)設(shè)問(wèn)題情境的重要性。那么,在創(chuàng)設(shè)數(shù)學(xué)情境時(shí)要注意哪些問(wèn)題呢?筆者結(jié)合自己的教學(xué)實(shí)踐,認(rèn)為以下幾個(gè)方面是值得教學(xué)者注意的:
一、“問(wèn)渠哪得清如許,為有源頭活水來(lái)”——引入情境要注重趣味性,以激發(fā)學(xué)生興趣
心理學(xué)認(rèn)為,學(xué)生只有對(duì)所學(xué)的知識(shí)產(chǎn)生興趣,才會(huì)愛(ài)學(xué),才能以最大限度的熱情投入到學(xué)習(xí)中去。因此,在教學(xué)中,教師要善于挖掘教材,積極創(chuàng)設(shè)生動(dòng)有趣的問(wèn)題情境來(lái)幫助學(xué)生學(xué)習(xí),培養(yǎng)學(xué)生對(duì)數(shù)學(xué)的興趣。
案例1:七年級(jí)下《游戲的公平與不公平》導(dǎo)入
師:今天,老師和大家做一個(gè)搶“30”的游戲,這個(gè)游戲在兩個(gè)人之間完成,規(guī)則如下:第一個(gè)人先說(shuō)“1”或“2”,第二個(gè)人要接著往下說(shuō)一個(gè)或兩個(gè)數(shù),然后又輪到第一個(gè)人,再接著往下說(shuō)一個(gè)或兩個(gè)數(shù),這樣兩人反復(fù)輪流,每次每人說(shuō)一個(gè)或兩個(gè)數(shù)都可以,但是不可以連說(shuō)三個(gè)數(shù)。說(shuō)到30為止。誰(shuí)先搶到30,誰(shuí)就獲勝。誰(shuí)來(lái)和老師比一比?
生1:老師,我來(lái)!
……
生2:老師,我和您比一比!
……
生2:老師,再來(lái)一次,我不相信我贏不了您!
……
(一連幾個(gè)學(xué)生都輸了,學(xué)生心有不甘。老師又和一個(gè)學(xué)生耳語(yǔ)了幾句。)
師:我收了個(gè)徒弟,誰(shuí)愿意和我的徒弟比一比?
(又一輪比賽開(kāi)始了,終于有學(xué)生發(fā)現(xiàn)了贏游戲的竅門(mén))
生3:老師,您這個(gè)游戲不公平。
師:為什么?
……
此例中,游戲不僅激發(fā)了學(xué)生的好勝心,也調(diào)動(dòng)了學(xué)生的學(xué)習(xí)熱情,使學(xué)生自然而然地進(jìn)入了學(xué)習(xí)。引入情境除了可引用游戲外,還可以是趣味性較強(qiáng)的名人軼事、歷史故事、數(shù)學(xué)趣題等。事實(shí)證明,貼近學(xué)生生活實(shí)際的、趣味性較強(qiáng)的情境,能很好地吸引學(xué)生的注意,最大程度地激發(fā)學(xué)生的學(xué)習(xí)欲望,培養(yǎng)學(xué)生學(xué)習(xí)興趣。
二、“不憤不啟,不悱不發(fā)”——情境創(chuàng)設(shè)應(yīng)注重引發(fā)學(xué)生的認(rèn)知沖突,激發(fā)學(xué)生內(nèi)在需要
情境的設(shè)計(jì)必須以引起學(xué)生的認(rèn)知沖突為基點(diǎn)才能引起學(xué)生的學(xué)習(xí)需要。教師根據(jù)新學(xué)知識(shí),方法特點(diǎn)及學(xué)生已有的認(rèn)知結(jié)構(gòu),設(shè)計(jì)一個(gè)包含新知識(shí)、新方法或新思維的新問(wèn)題情境(舊知識(shí),舊方法或習(xí)慣思維不能解決的),學(xué)生運(yùn)用舊知識(shí)、舊方法、習(xí)慣思維于新問(wèn)題情境時(shí)便會(huì)產(chǎn)生認(rèn)知沖突,由此產(chǎn)生疑問(wèn)和急需找到解決方法的內(nèi)在需要。在這種需要的驅(qū)使下,教師展開(kāi)教學(xué),則能收到事半功倍的教學(xué)效果。
案例2:《因式分解》的引入
先用多媒體演示酸奶中乳酸菌桿的營(yíng)養(yǎng),介紹活性乳酸桿菌在0℃~7℃的環(huán)境中存活是靜止的,但隨著溫度的升高,乳酸菌會(huì)快速死亡。然后請(qǐng)學(xué)生思考下面問(wèn)題:每升酸奶在0℃~7℃時(shí)含有活性乳酸桿菌220個(gè),在10℃時(shí)活性乳酸桿菌死亡了217個(gè),在12℃時(shí)又死亡了219個(gè),那么此時(shí)活性乳酸桿菌還剩多少個(gè)?請(qǐng)列出算式,并化簡(jiǎn)結(jié)果。
此例中,學(xué)生很容易列出算式220-217-219,呈現(xiàn)出較高的成就感,但怎么化簡(jiǎn)呢?學(xué)生不知所措。顯然,這是三個(gè)整數(shù)的減法,可以把三個(gè)乘方先算出來(lái),再相減,但這樣做不合題意,學(xué)生處在一個(gè)知其可為,但不知如何為的境地。此時(shí),認(rèn)知沖突已被引發(fā),學(xué)生有了急需找到解決方法的內(nèi)在需要。這時(shí),教師告訴學(xué)生,學(xué)習(xí)了《因式分解》后,我們就能很方便地解決這個(gè)問(wèn)題;而懸念的設(shè)置,無(wú)疑激發(fā)了學(xué)生的求知欲,為本節(jié)課的學(xué)習(xí)創(chuàng)設(shè)了良好的情緒狀態(tài)。
三、“紙上得來(lái)終覺(jué)淺,絕知此事要躬行”——圍繞問(wèn)題動(dòng)手實(shí)驗(yàn)也是一種情境
建構(gòu)主義認(rèn)為,動(dòng)手實(shí)踐與其他數(shù)學(xué)學(xué)習(xí)方式的合理配置和有效融合能夠營(yíng)造一種豐富多樣的數(shù)學(xué)學(xué)習(xí)情境,而這種情境可以讓學(xué)生初步體驗(yàn)將要學(xué)習(xí)的數(shù)學(xué)知識(shí),為理解數(shù)學(xué)知識(shí)做好準(zhǔn)備,為發(fā)現(xiàn)數(shù)學(xué)原理提供幫助,并且能夠?yàn)閷W(xué)生提供與數(shù)學(xué)有著直接的和重要作用的經(jīng)驗(yàn),以及情感性的支持。
案例3:在講授等腰三角形性質(zhì)的時(shí)候,有的老師設(shè)計(jì)了這樣的一個(gè)情境:讓學(xué)生做出一張等腰三角形的半透明的紙片(如圖),每個(gè)同學(xué)的等腰三角形的大小和形狀可以不一樣,把紙片對(duì)折,讓兩腰重合在一起,你發(fā)現(xiàn)什么現(xiàn)象?請(qǐng)你盡可能多地寫(xiě)出結(jié)論。
學(xué)生通過(guò)動(dòng)手操作、觀察、思考和交流寫(xiě)出了如下結(jié)論:
1.等腰三角形是軸對(duì)稱(chēng)圖形;
2.∠B=∠C;
3.BD=CD,即AD為底邊上的中線
4.∠ADB=∠ADC=90。,即AD為底邊上的高;
5.∠BAD=∠CAD,即AD為頂角平分線。本例中,教師為學(xué)生提供了一個(gè)可感知,可操作,可體驗(yàn)的情境,既激發(fā)了學(xué)生的學(xué)習(xí)興趣,又使抽象的數(shù)學(xué)知識(shí)蘊(yùn)于簡(jiǎn)單的實(shí)驗(yàn)之中,促進(jìn)了學(xué)生的認(rèn)知理解。又如,在講授《旋轉(zhuǎn)的特征》時(shí),可讓學(xué)生動(dòng)手操作,從而得出“圖形的旋轉(zhuǎn)是由旋轉(zhuǎn)中心、旋轉(zhuǎn)角度和旋轉(zhuǎn)方向所決定”的結(jié)論??傊處煈?yīng)盡可能的為學(xué)生創(chuàng)設(shè)動(dòng)手實(shí)驗(yàn)情境,讓學(xué)生“學(xué)中做”,“做中學(xué)”,培養(yǎng)他們的動(dòng)手能力和創(chuàng)新精神,讓他們?cè)隗w驗(yàn)和感悟中成長(zhǎng)。
四、“逐層以深入,循序而漸進(jìn)”——探究
性教學(xué)中的情境設(shè)計(jì)要注重遞進(jìn)性
探究性教學(xué)中,教師一般都需要?jiǎng)?chuàng)設(shè)出多個(gè)情境,這些情境根據(jù)教學(xué)需要,在不同的時(shí)間以不同的方式呈現(xiàn)出來(lái)。由于探究性學(xué)習(xí)在總體上應(yīng)呈現(xiàn)由簡(jiǎn)單到復(fù)雜、由低級(jí)到高級(jí)的螺旋式上升發(fā)展趨勢(shì),這就要求創(chuàng)設(shè)的多個(gè)情境之間呈遞進(jìn)關(guān)系,要體現(xiàn)出層次性——既要防止步距過(guò)小,探究起來(lái)缺乏難度和挑戰(zhàn)性;也要防止步距過(guò)大,導(dǎo)致經(jīng)驗(yàn)獲得不足,探究脫節(jié)。
案例4:探索《勾股定理》(直角三角形三邊的關(guān)系)
情境1:讓學(xué)生觀察動(dòng)畫(huà),講述我國(guó)科學(xué)家曾向太空發(fā)射勾股圖試圖與外星人溝通的故事;講述2002年,國(guó)際數(shù)學(xué)家大會(huì)采用弦圖作為會(huì)標(biāo)。設(shè)問(wèn):它為什么會(huì)有如此大的魅力?它蘊(yùn)涵著怎樣迷人的奧秘呢?
情境2:用幾何畫(huà)板作一個(gè)直角三角形ABC(∠C=90°),量一量?jī)蓷l直角邊,斜邊的長(zhǎng)度;改變直角邊或斜邊的長(zhǎng)度,再量一量。多進(jìn)行幾次,并完成表格。你能發(fā)現(xiàn)什么規(guī)律?
情境3:展示格點(diǎn)圖(1),圖中的三個(gè)正方形之間存在怎么的關(guān)系?由此你能得出直角三角形三邊關(guān)系嗎?
情境4:展示格點(diǎn)圖(2),圖中的三個(gè)正方形之間存在怎樣的關(guān)系?由此你能得出直角三角形三邊關(guān)系嗎?
情境5:請(qǐng)學(xué)生拿出準(zhǔn)備好的四個(gè)完全相同的直角三角形,拼成一個(gè)正方形(不得有地方重合),你能根據(jù)面積與恒等式的知識(shí)得到直角三角形的三邊關(guān)系嗎?
此例中,情境1為引入情境,作用是提出研究對(duì)象,將學(xué)生注意導(dǎo)向新課的學(xué)習(xí),同時(shí)激發(fā)學(xué)生好奇心和學(xué)習(xí)興趣。情境2是通過(guò)量一量的方法,獲取數(shù)據(jù),并對(duì)數(shù)據(jù)中可能的數(shù)量關(guān)系進(jìn)行猜測(cè)。情境3,情境4是對(duì)情境2的猜測(cè)結(jié)果進(jìn)行驗(yàn)證,后者相對(duì)前者,更具一般性和更高的思維要求。情境5是對(duì)猜測(cè)結(jié)果的數(shù)學(xué)證明,也是對(duì)由前面情境所得知識(shí)的歸納和肯定。這一系列情境環(huán)環(huán)相扣,層層深入,引導(dǎo)學(xué)生完成探究,最終建構(gòu)起直角三角形三邊關(guān)系。事實(shí)證明,探究過(guò)程中遞進(jìn)性的情境鏈的設(shè)計(jì),能給學(xué)生綜合應(yīng)用觀察、操作、猜測(cè)、思考、討論、驗(yàn)證等多種活動(dòng)的機(jī)會(huì),極大地激發(fā)了學(xué)生的求知欲,豐富了學(xué)生的感知性,很好地培養(yǎng)了學(xué)生自主探究能力和創(chuàng)造性思維。五、“運(yùn)用之妙,存乎一心”——情境創(chuàng)設(shè)應(yīng)追求高效益
情境的功能可體現(xiàn)為引入與過(guò)渡,吸引與調(diào)節(jié),支持與促進(jìn)。作為教學(xué)者,應(yīng)使情境的功能得到最大化的體現(xiàn),即在注重情境有效性時(shí),更要追求情境的高效益,以使課堂教學(xué)達(dá)到教學(xué)過(guò)程與方法的最優(yōu)化,提高教學(xué)效果,促進(jìn)學(xué)生可持續(xù)發(fā)展。
案例:錯(cuò)題的妙用
(分式的加減講完后,開(kāi)始練習(xí)。其中一題為:++
。老師請(qǐng)三位學(xué)生板演,其中生1,生2過(guò)程完整,結(jié)果正確。生3出現(xiàn)了問(wèn)題)
生3:原式=
(顯然錯(cuò)了。老師開(kāi)始點(diǎn)評(píng)生3練習(xí),學(xué)生轟笑)
師:錯(cuò)在哪里呢?
生4:原來(lái)的分母沒(méi)有了。
生5:把分式方程的變形(去分母)搬到解計(jì)算題上了?!皬埞诶畲鳌保?/p>
(生3眼睛不再看著黑板,低下了頭)
師:很好!生3由于粗心,把分式的加減當(dāng)方程來(lái)解了。解法雖然錯(cuò)了,但是可以給我們一個(gè)啟示,若將此題去掉分母來(lái)解,則其解法簡(jiǎn)潔快捷。因此,我們能否考慮利用解分式方程的方法來(lái)解它?
(生3的頭慢慢抬了起來(lái))
(學(xué)生討論,一個(gè)新穎的方法出來(lái)了)
解:設(shè)
去分母得,
解得:A=
學(xué)生:真巧妙!
師:確實(shí),生3的解法錯(cuò)了,但他這種“用方程的思想解分式計(jì)算題”,卻是一種尋求簡(jiǎn)便的思想,是將自己思維的真實(shí)展示,給了我們有益的啟示。
(一)利用故事創(chuàng)設(shè)問(wèn)題情境,培養(yǎng)學(xué)生學(xué)習(xí)興趣小學(xué)生比較喜歡一些具有趣味性的事物,教師可以充分利用這一點(diǎn)進(jìn)行高效教學(xué)。興趣是最好的老師,在教學(xué)的過(guò)程中,教師可以通過(guò)查找或者自創(chuàng)一些與教學(xué)內(nèi)容相關(guān)聯(lián)的故事,在充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性和主動(dòng)性的同時(shí),不斷加深學(xué)生對(duì)數(shù)學(xué)問(wèn)題的學(xué)習(xí)和理解。例如在指導(dǎo)學(xué)生對(duì)《統(tǒng)計(jì)》這篇內(nèi)容的學(xué)習(xí)過(guò)程中,教師可以通過(guò)自創(chuàng)一個(gè)小故事的方式,引導(dǎo)學(xué)生進(jìn)行深入學(xué)習(xí)。如“小熊一家通過(guò)辛勤的努力,在秋天,收獲了大量的糧食,其中水稻500kg、高粱450kg、玉米800kg,小熊一家一共收獲了多少kg的糧食呢?”在故事的編造過(guò)程中,要注重結(jié)合教學(xué)內(nèi)容,合理插入插入問(wèn)題,可以逐漸增加問(wèn)題難度的方式,使學(xué)生不斷加深對(duì)知識(shí)的學(xué)習(xí)和理解,創(chuàng)建一個(gè)良好的學(xué)習(xí)氛圍,使小學(xué)數(shù)學(xué)教學(xué)產(chǎn)生事半功倍的效果。
(二)創(chuàng)建啟發(fā)性的問(wèn)題情境,促進(jìn)學(xué)生思維發(fā)散小學(xué)高年級(jí)數(shù)學(xué)教學(xué)的目的不僅僅是指導(dǎo)學(xué)生深入的掌握數(shù)學(xué)知識(shí),靈活的運(yùn)用數(shù)學(xué)知識(shí)解答生活中的問(wèn)題,同時(shí),還要指導(dǎo)學(xué)生通過(guò)長(zhǎng)時(shí)間的數(shù)學(xué)學(xué)習(xí),形成良好的思維能力,在面對(duì)問(wèn)題時(shí),能夠獨(dú)立思考、獨(dú)立分析、獨(dú)立解決問(wèn)題。在教學(xué)的過(guò)程中,教師可以通過(guò)創(chuàng)建一些具有啟發(fā)性的問(wèn)題,使學(xué)生的問(wèn)題探究的過(guò)程中,不斷的發(fā)散思維,形成一定的數(shù)學(xué)邏輯思維能力[3]。例如在《量的計(jì)量》這篇內(nèi)容的學(xué)習(xí)過(guò)程中,教師可以通過(guò)問(wèn)題引導(dǎo),啟發(fā)學(xué)生對(duì)學(xué)習(xí)內(nèi)容的深入回憶,如“我們共學(xué)習(xí)過(guò)哪些量的計(jì)量”、“長(zhǎng)度、面積、體積的單位各是什么?”等問(wèn)題。在學(xué)生進(jìn)行積極發(fā)言的同時(shí),指導(dǎo)學(xué)生匯總和整理各種學(xué)習(xí)過(guò)的計(jì)量單位,牢固掌握各種計(jì)量單位及單位間的進(jìn)率。
(三)注重聯(lián)系生活實(shí)際內(nèi)容,培養(yǎng)學(xué)生探究思維在小學(xué)數(shù)學(xué)教學(xué)的過(guò)程中,教師可以通過(guò)結(jié)合生活實(shí)際內(nèi)容,在充分調(diào)動(dòng)學(xué)生對(duì)數(shù)學(xué)學(xué)習(xí)積極性和主動(dòng)性的同時(shí),培養(yǎng)學(xué)生形成良好的探究思維能力。生活中處處都有數(shù)學(xué)問(wèn)題,例如買(mǎi)小食品時(shí),需要計(jì)算總金額;收取物品時(shí),需要計(jì)算物品個(gè)數(shù)等等。在指導(dǎo)學(xué)生對(duì)人教版六年級(jí)下冊(cè)《平面圖形的認(rèn)識(shí)》這篇內(nèi)容的學(xué)習(xí)中,教師可以通過(guò)結(jié)合生活實(shí)際,培養(yǎng)學(xué)生思維能力。比如教師可以通過(guò)“同學(xué)們,從我們的教學(xué)樓走到學(xué)校門(mén)口的最短路線是怎么走的?”、“我們生活中,什么物品是等腰三角形形狀的?”等問(wèn)題,使學(xué)生在歡快的課堂氛圍中,加深對(duì)知識(shí)的理解和鞏固,并形成良好的探究性思維。
(四)創(chuàng)設(shè)趣味性的游戲情景,啟發(fā)學(xué)生獨(dú)立思考小學(xué)生的認(rèn)知能力較低,比較喜歡游戲類(lèi)活動(dòng),教師可以通過(guò)結(jié)合教材內(nèi)容,開(kāi)展游戲類(lèi)的活動(dòng)項(xiàng)目,在充分激發(fā)學(xué)生學(xué)習(xí)興趣,營(yíng)造一個(gè)歡快、輕松課堂氛圍。例如在人教版小學(xué)五年級(jí)上冊(cè)《列方程解應(yīng)用題》這篇內(nèi)容的學(xué)習(xí)過(guò)程中,在對(duì)行程問(wèn)題的解題過(guò)程中,可以通過(guò)組織兩個(gè)學(xué)生一個(gè)以每秒鐘0.5米的速度從教室的門(mén)走到窗戶(hù)邊,另一個(gè)學(xué)生按照同樣的路線和速度,從窗戶(hù)邊走到門(mén)前,在3分鐘后兩人相遇。要求學(xué)生根據(jù)已知條件列出方程式:(0.5+0.5)×3。
案例:“我”在某市購(gòu)物,甲商店提出的優(yōu)惠銷(xiāo)售方法是所有商品按九五折銷(xiāo)售,而乙商店提出的優(yōu)惠方法是凡一次購(gòu)滿(mǎn)500元可領(lǐng)取九折貴賓卡。請(qǐng)同學(xué)們幫老師出出主意,“我”究竟該到哪家商店購(gòu)物得到的優(yōu)惠更多?問(wèn)題提出后,學(xué)生們十分感興趣,紛紛議論,連平時(shí)數(shù)學(xué)成績(jī)較差的學(xué)生也躍躍欲試。學(xué)生們學(xué)習(xí)的主動(dòng)性很好地被調(diào)動(dòng)了起來(lái)?;顒?shì)形成,學(xué)生們?cè)诓恢挥X(jué)中運(yùn)用了分類(lèi)討論的思想方法。
曾有人說(shuō):“數(shù)學(xué)是思維的體操”。數(shù)學(xué)教學(xué)是思維活動(dòng)的教學(xué)。學(xué)生的思維活動(dòng)有賴(lài)于教師的循循善誘和精心的點(diǎn)撥和啟發(fā)。因此,課堂情境的創(chuàng)設(shè)應(yīng)以啟導(dǎo)學(xué)生思維為立足點(diǎn)。心理學(xué)研究表明:不好的思維情境會(huì)抑制學(xué)生的思維熱情,所以,課堂上不論是設(shè)計(jì)提問(wèn)、幽默,還是欣喜、競(jìng)爭(zhēng),都應(yīng)考慮活動(dòng)的啟發(fā)性,孔子曰:“不憤不啟,不悱不發(fā)”,如何使學(xué)生心理上有憤有悱,正是課堂情境創(chuàng)設(shè)所要達(dá)到的目的。
二、強(qiáng)化感受性:
情境教學(xué)往往會(huì)具有鮮明的形象性,使學(xué)生如入其境,可見(jiàn)可聞,產(chǎn)生真切感。只有感受真切,才能入境。要做到這一點(diǎn),可以用創(chuàng)設(shè)問(wèn)題情境來(lái)激發(fā)學(xué)生求知欲。創(chuàng)設(shè)問(wèn)題情境就是在講授內(nèi)容和學(xué)生求知心理間制造一種“不和諧”,將學(xué)生引入一種與問(wèn)題有關(guān)的情境中。心理學(xué)研究表明:“認(rèn)知矛盾時(shí)動(dòng)機(jī)的根源。”課堂上,教師創(chuàng)設(shè)認(rèn)知不協(xié)調(diào)的問(wèn)題情境,以激起學(xué)生研究問(wèn)題的動(dòng)機(jī),通過(guò)探索,消除劇烈矛盾,獲得積極的心理滿(mǎn)足。創(chuàng)設(shè)問(wèn)題情境應(yīng)注意要小而具體、新穎有趣、有啟發(fā)性,同時(shí)又有適當(dāng)?shù)碾y度。此外,還要注意問(wèn)題情境的創(chuàng)設(shè)必須與課本內(nèi)容保持相對(duì)一致,更不能運(yùn)用不恰當(dāng)?shù)谋扔?,不利于學(xué)生正確理解概念和準(zhǔn)確使用數(shù)學(xué)語(yǔ)言能力的形成。教師要善于將所要解決的課題寓于學(xué)生實(shí)際掌握的知識(shí)基礎(chǔ)之中,造成心理上的懸念,把問(wèn)題作為教學(xué)過(guò)程的出發(fā)點(diǎn),以問(wèn)題情境激發(fā)學(xué)生的積極性,讓學(xué)生在迫切要求下學(xué)習(xí)。
案例:在對(duì)“等腰三角形的判定”進(jìn)行教學(xué)設(shè)計(jì)時(shí),教師可以通過(guò)具體問(wèn)題的解決創(chuàng)設(shè)出如下誘人的問(wèn)題情境:
在ABC中,AB=AC,倘若不留神,它的一部分被墨水涂沒(méi)了,只留下了一條底邊BC和一個(gè)底角∠C,請(qǐng)問(wèn),有沒(méi)有辦法把原來(lái)的等腰三角形重新畫(huà)出來(lái)?學(xué)生先畫(huà)出殘余圖形并思索著如何畫(huà)出被墨水涂沒(méi)的部分。各種畫(huà)法出現(xiàn)了,有的學(xué)生是先量出∠C的度數(shù),再以BC為一邊,B點(diǎn)為頂點(diǎn)作∠B=∠C,B與C的邊相交得頂點(diǎn)A;也有的是取BC中點(diǎn)D,過(guò)D點(diǎn)作BC的垂線,與∠C的一邊相交得頂點(diǎn)A,這些畫(huà)法的正確性要用“判定定理”來(lái)判定,而這正是要學(xué)的課題。于是教師便抓住“所畫(huà)的三角形一定是等腰三角形嗎?”引出課題,再引導(dǎo)學(xué)生分析畫(huà)法的實(shí)質(zhì),并用幾何語(yǔ)言概括出這個(gè)實(shí)質(zhì),即“ABC中,若∠B=∠C,則AB=AC”。這樣,就由學(xué)生自己從問(wèn)題出發(fā)獲得了判定定理。接著,再引導(dǎo)學(xué)生根據(jù)上述實(shí)際問(wèn)題的啟示思考證明方法。
除創(chuàng)設(shè)問(wèn)題情境外,還可以創(chuàng)設(shè)新穎、驚愕、幽默、議論等各種教學(xué)情境,良好的情境可以使教學(xué)內(nèi)容觸及學(xué)生的情緒和意志領(lǐng)域,讓學(xué)生深切感受學(xué)習(xí)活動(dòng)的全過(guò)程并升化到自己精神的需要,成為提高課堂教學(xué)效率的重要手段。這正象贊可夫所說(shuō)的:“教學(xué)法一旦觸及學(xué)生的情緒和意志領(lǐng)域,這種教學(xué)法就能發(fā)揮高度有效的作用。”
三、著眼發(fā)展性:
數(shù)學(xué)是一門(mén)抽象和邏輯嚴(yán)密的學(xué)科,正由于這一點(diǎn)令相當(dāng)一部分學(xué)生望而卻步,對(duì)其缺乏學(xué)習(xí)熱情。情境教學(xué)當(dāng)然不能將所有的數(shù)學(xué)知識(shí)都用生活真實(shí)形象再現(xiàn)出來(lái),事實(shí)上情境教學(xué)的形象真切,并不是實(shí)體的復(fù)現(xiàn)或忠實(shí)的復(fù)制、照相式的再造,而是以簡(jiǎn)化的形體,暗示的手法,獲得與實(shí)體在結(jié)構(gòu)上對(duì)應(yīng)的形象,從而給學(xué)生以真切之感,在原有的知識(shí)上進(jìn)一步深入發(fā)展,以獲取新的知識(shí)。
案例:在學(xué)習(xí)完了平行四邊形判定定理之后,如何進(jìn)一步運(yùn)用這些定理去判定一個(gè)四邊形是否為平行四邊形的習(xí)題課上.我先帶領(lǐng)學(xué)生回顧平行四邊形的定義以及四條判定定理:
1、平行四邊形定義:兩組對(duì)邊分別平行的四邊形是平行四邊形。
2、平行四邊形判定定理:
(1)兩組對(duì)邊分別相等的四邊形是平行四邊形。
(2)對(duì)角線相互平分的四邊形是平行四邊形。
(3)兩組對(duì)角分別相等的四邊形是平行四邊形。
(4)一組對(duì)邊平行且相等的四邊形是平行四邊形。
分析從這五條判定方法結(jié)構(gòu)來(lái)看,平行四邊形定義和前三條判定定理的條件較單一,或相等、或平行,而第四條判定定理是相等與平行二者兼有,如果將它看作是定義和判定(1)中各取條件的一部分而得出的話,那么從定義和前三條判定定理中每?jī)蓚€(gè)取其中部分條件是否都能構(gòu)成平行四邊形的判定方法呢?這樣我創(chuàng)設(shè)了情境,根據(jù)對(duì)第四條判定定理的剖析,使學(xué)生用類(lèi)比的方法提出了猜想:
1.一組對(duì)邊平行且另一組對(duì)邊相等的四邊形是平行四邊形。
2.一組對(duì)邊平行且一組對(duì)角相等的四邊形是平行四邊形。
3.一組對(duì)邊平行且對(duì)角線交點(diǎn)平分某一條對(duì)角線的四邊形是平行四邊形。
4.一組對(duì)邊相等且對(duì)角線交點(diǎn)平分某一條對(duì)角線的四邊形是平行四邊形。
5.一組對(duì)邊相等且一組對(duì)角相等的四邊形是平行四邊形。
6.一組對(duì)角相等且連該兩頂點(diǎn)的對(duì)角線平分另一對(duì)角線的四邊形是平行四邊形。
7.一組對(duì)角相等且連該兩頂點(diǎn)的對(duì)角線被另一對(duì)角線平分的四邊形是平行四邊形。
在啟發(fā)學(xué)生得出上面的若干猜想之后,我又進(jìn)一步強(qiáng)調(diào)證明的重要性,以使學(xué)生形成嚴(yán)謹(jǐn)?shù)乃季S習(xí)慣,達(dá)到提高學(xué)生邏輯思維能力的目的,要求學(xué)生用所學(xué)的5種判定方法去一一驗(yàn)證這七條猜想結(jié)論的正確性。
經(jīng)過(guò)全體師生一齊分析驗(yàn)證,最終得出結(jié)論:七條猜想中有四條猜想是錯(cuò)誤的,另外三個(gè)正確猜想中的一個(gè)尚待給予證明。學(xué)生在老師的層層設(shè)問(wèn)下,參與了問(wèn)題探究的全過(guò)程。不僅對(duì)知識(shí)理解更透徹,掌握更牢固,而且從中受到觀察、猜想、分析與轉(zhuǎn)換等思維方法的啟迪,思維品質(zhì)獲得了培養(yǎng),同時(shí)學(xué)生也從探索的成功中感到喜悅,使學(xué)習(xí)數(shù)學(xué)的興趣得到了強(qiáng)化,知識(shí)得到了進(jìn)一步發(fā)展。
四、滲透教育性:
教師要傳授知識(shí),更要育人。如何在數(shù)學(xué)教育中,對(duì)學(xué)生進(jìn)行思想道德教育,在情境教學(xué)中也得到了較好的體現(xiàn)。法國(guó)著名數(shù)學(xué)家包羅•朗之萬(wàn)曾說(shuō):“在數(shù)學(xué)教學(xué)中,加入歷史具有百利而無(wú)一弊的。”我國(guó)是數(shù)學(xué)的故鄉(xiāng)之一,中華民族有著光輝燦爛的數(shù)學(xué)史,如果將數(shù)學(xué)科學(xué)史滲透到數(shù)學(xué)教學(xué)中,可以拓寬學(xué)生的視野,進(jìn)行愛(ài)國(guó)主義教育,對(duì)于增強(qiáng)民族自信心,提高學(xué)生素質(zhì),激勵(lì)學(xué)生奮發(fā)向上,形成愛(ài)科學(xué),學(xué)科學(xué)的良好風(fēng)氣有著重要作用。
教師應(yīng)根據(jù)教材特點(diǎn),適應(yīng)地選擇數(shù)學(xué)科學(xué)史資料,有針對(duì)性地進(jìn)行教學(xué)
案例:圓周率π是數(shù)學(xué)中的一個(gè)重要常數(shù),是圓的周長(zhǎng)與其直徑之比。為了回答這個(gè)比值等于多少,一代代中外數(shù)學(xué)家鍥而不舍,不斷探索,付出了艱辛的勞動(dòng),其中我國(guó)的數(shù)學(xué)家祖沖之取得了“當(dāng)時(shí)世界上最先進(jìn)的成就”。為了讓同學(xué)們了解這一成就的意義,從中得到啟迪,我選配了有關(guān)的史料,作了一次讀后小結(jié)。先簡(jiǎn)單介紹發(fā)展過(guò)程:最初一些文明古國(guó)均取π=3,如我國(guó)《周髀算經(jīng)》就說(shuō)“徑一周三”,后人稱(chēng)之為“古率”。人們通過(guò)利用經(jīng)驗(yàn)數(shù)據(jù)π修正值,例如古埃及人和古巴比倫人分別得到π=3.1605和π=3.125。后來(lái)古希臘數(shù)學(xué)家阿基米德(公元前287~212年)利用圓內(nèi)接和外接正多邊形來(lái)求圓周率π的近似值,得到當(dāng)時(shí)關(guān)于π的最好估值約為:3.1409<π<3.1429;此后古希臘的托勒玫約在公元150年左右又進(jìn)一步求出π=3.141666。我國(guó)魏晉時(shí)代數(shù)學(xué)家劉微(約公元3~4世紀(jì))用圓的內(nèi)接正多邊形的“弧矢割圓術(shù)”計(jì)算π值。當(dāng)邊數(shù)為192時(shí),得到3.141024<π<3.142704。后來(lái)把邊數(shù)增加到3072邊時(shí),進(jìn)一步得到π=3.14159,這比托勒玫的結(jié)果又有了進(jìn)步。待到南北朝時(shí),祖沖之(公元429~500年)更上一層樓,計(jì)算出π的值在3.1415926與3.1415927之間。求出了準(zhǔn)確到七位小數(shù)π的值。我國(guó)的這一精確度,在長(zhǎng)達(dá)一千年的時(shí)間中,一直處于世界領(lǐng)先地位,這一記錄直到公元1429年左右才被中亞細(xì)亞的數(shù)學(xué)家阿爾•卡西打破,他準(zhǔn)確地計(jì)算到小數(shù)點(diǎn)后第十六位。這樣可使同學(xué)們明白,人類(lèi)對(duì)圓周率認(rèn)識(shí)的逐步深入,是中外一代代數(shù)學(xué)家不斷努力的結(jié)果。我國(guó)不僅以古代的四大發(fā)明-------火藥、指南針、造紙、印刷術(shù)對(duì)世界文明的進(jìn)步起了巨大的作用,而且在數(shù)學(xué)方面也曾在一些領(lǐng)域內(nèi)取得過(guò)遙遙領(lǐng)先的地位,創(chuàng)造過(guò)多項(xiàng)“世界紀(jì)錄”,祖沖之計(jì)算出的圓周率就是其中的一項(xiàng)。接著我再說(shuō)明,我國(guó)的科學(xué)技術(shù)只是近幾百年來(lái),由于封建社會(huì)的日趨沒(méi)落,才逐漸落伍。如今在向四個(gè)現(xiàn)代化進(jìn)軍的新中,趕超世界先進(jìn)水平的歷史重任就責(zé)無(wú)旁貸地落在同學(xué)們的肩上。我們要下定決心,努力學(xué)習(xí),奮發(fā)圖強(qiáng)。
為了使同學(xué)們認(rèn)識(shí)科學(xué)的艱辛以及人類(lèi)鍥而不舍的探索精神,我還進(jìn)一步介紹:同學(xué)們都知道π是無(wú)理數(shù),可是在18世紀(jì)以前,“π是有理數(shù)還是無(wú)理數(shù)?”一直是許多數(shù)學(xué)家研究的課題之一。直到1767年蘭伯脫才證明了是無(wú)理數(shù),圓滿(mǎn)地回答了這個(gè)問(wèn)題。然而人類(lèi)對(duì)于π值的進(jìn)一步計(jì)算并沒(méi)有終止。例如1610年德國(guó)人路多夫根據(jù)古典方法,用262邊形計(jì)算π到小數(shù)點(diǎn)后第35位。他把自己一生的大部分時(shí)間花在這項(xiàng)工作上。后人為了紀(jì)念他,就把這個(gè)數(shù)刻在它的墓碑上。至今圓周率被德國(guó)人稱(chēng)為“路多夫數(shù)”。1873年英國(guó)的向客斯計(jì)算π到707位小數(shù),1944年英國(guó)曼徹斯特大學(xué)的弗格森分析了向克斯計(jì)算的結(jié)果后,產(chǎn)生了懷疑并決定重新算一次。他從1944年5月到1945年5月用了一整年的時(shí)間來(lái)做這項(xiàng)工作,結(jié)果發(fā)現(xiàn)向克斯的707位小數(shù)只有前面527位是正確的。后來(lái)有了電子計(jì)算機(jī),有人已經(jīng)算到第十億位。同學(xué)們要問(wèn)計(jì)算如此高精度的π值究竟有什么意義?專(zhuān)家們認(rèn)為,至少可以由此來(lái)研究π的小數(shù)出現(xiàn)的規(guī)律。更重要的是對(duì)π認(rèn)識(shí)的新突破進(jìn)一步說(shuō)明了人類(lèi)對(duì)自然的認(rèn)識(shí)是無(wú)窮無(wú)盡的。幾千年來(lái),沒(méi)有哪一個(gè)數(shù)比圓周率π更吸引人了。根據(jù)這一段教材的特點(diǎn),適當(dāng)選配數(shù)學(xué)史料,采用讀后小結(jié)的方式,不僅可以使學(xué)生加深對(duì)課文的理解,而且人類(lèi)對(duì)圓周率認(rèn)識(shí)不斷加深的過(guò)程也是學(xué)生深受感染,興趣盎然,這對(duì)培養(yǎng)學(xué)生獻(xiàn)身科學(xué)的探索精神有著積極的意義。
五、貫穿實(shí)踐性:
情境教學(xué)注重“情感”,又提倡“學(xué)以致用”,努力使二者有機(jī)地統(tǒng)一起來(lái),在特定的情境中和熱烈的情感驅(qū)動(dòng)下進(jìn)行實(shí)際應(yīng)用,同時(shí)還通過(guò)實(shí)際應(yīng)用來(lái)強(qiáng)化學(xué)習(xí)成功所帶來(lái)的快樂(lè)。數(shù)學(xué)教學(xué)也應(yīng)以訓(xùn)練學(xué)生能力為手段,貫穿實(shí)踐性,把現(xiàn)在的學(xué)習(xí)和未來(lái)的應(yīng)用聯(lián)系起來(lái),并注重學(xué)生的應(yīng)用操作和能力的培養(yǎng)。我們充分利用情境教學(xué)特有的功能,在拓展的寬闊的數(shù)學(xué)教學(xué)空間里,創(chuàng)設(shè)既帶有情感色彩,又富有實(shí)際價(jià)值的操作情境,讓學(xué)生扮演測(cè)量員,統(tǒng)計(jì)員進(jìn)行實(shí)地調(diào)查,搜集數(shù)據(jù),制統(tǒng)計(jì)圖,寫(xiě)調(diào)查報(bào)告,其教學(xué)效果可謂“百問(wèn)不如一做”,學(xué)生產(chǎn)生頓悟,求知欲得到滿(mǎn)足更加樂(lè)意投入到新的學(xué)習(xí)情境中去了。同時(shí)對(duì)學(xué)生思維能力、表達(dá)能力、動(dòng)手能力、想象能力、提出問(wèn)題和解決問(wèn)題的能力,甚至交際能力、應(yīng)變能力等等,都得到了較好的培養(yǎng)和訓(xùn)練。
案例:“三角形內(nèi)角和定理”就可以通過(guò)實(shí)踐操作的辦法來(lái)創(chuàng)設(shè)教學(xué)情境。學(xué)生的認(rèn)知結(jié)構(gòu)中,已經(jīng)有了角的有關(guān)概念,三角形的概念,還具有同位角、內(nèi)錯(cuò)角相等等有關(guān)平行線的性質(zhì)。這些都是學(xué)習(xí)新知識(shí)的“固著點(diǎn)”,但由于它們與“三角形內(nèi)角和定理”之間的邏輯聯(lián)系并不十分明顯,大部分同學(xué)都難以想到要對(duì)三角形的三個(gè)內(nèi)角之和進(jìn)行一番研究,這種情況下,我們可以創(chuàng)設(shè)這樣的數(shù)學(xué)情境:首先,在回顧三角形概念的基礎(chǔ)上,提出:“三角形的三個(gè)內(nèi)角會(huì)不會(huì)存在某種關(guān)系呢?”這是綱領(lǐng)性提問(wèn),對(duì)學(xué)生的思維還達(dá)不到確定的導(dǎo)向作用,學(xué)生可能會(huì)對(duì)角與角的相等、不等、兩角之和(差)與第三個(gè)角的大小比較等等問(wèn)題進(jìn)行研究,當(dāng)發(fā)現(xiàn)這些問(wèn)題只對(duì)某些特殊三角形有意義時(shí),他們的思維可能會(huì)指向“三個(gè)內(nèi)角的和是否有一定的規(guī)律?”我適時(shí)地提出:“請(qǐng)同學(xué)們畫(huà)一些三角形(包括銳角、直角、鈍角三角形),再用量角器量出三個(gè)角,觀察一下各三角形的三個(gè)內(nèi)角有什么聯(lián)系?!苯?jīng)測(cè)量、計(jì)算,學(xué)生發(fā)現(xiàn)三個(gè)內(nèi)角的和都在180°左右。我再進(jìn)一步提出:“由于具體測(cè)量會(huì)有誤差,但和數(shù)都在180°左右,三角形的三個(gè)內(nèi)角之和是否為180°呢?請(qǐng)同學(xué)們把三個(gè)角拼在一起,看一看,構(gòu)成了一個(gè)怎樣的角?”學(xué)生在完成這一實(shí)驗(yàn)后發(fā)現(xiàn),三個(gè)內(nèi)角拼在一起構(gòu)成一個(gè)平角。經(jīng)過(guò)上述兩步實(shí)驗(yàn),提出“三角形的三個(gè)內(nèi)角之和為180°”的猜想就水到渠成了。接著,我指出了實(shí)驗(yàn)操作的局限性,并要求學(xué)生給出嚴(yán)格的邏輯證明。在尋找證明方法時(shí),我提出:“觀察拼接圖形,從中能得到什么啟示?”學(xué)生可憑借實(shí)踐操作時(shí)的感性經(jīng)驗(yàn),找到證明方法。實(shí)踐操作不但使學(xué)生獲得了定理的猜想,而且受到了證明定理的啟發(fā),顯示了很大的智力價(jià)值。又如:我在初三復(fù)習(xí)列方程解應(yīng)用題時(shí),為了讓學(xué)生明白學(xué)數(shù)學(xué)的主要目的是要培養(yǎng)思維和掌握解決問(wèn)題的能力,在課的最后出了一道開(kāi)放型命題:
將一個(gè)50米長(zhǎng)30米寬的矩形空地改造成為花壇,要求花壇所占的面積,恰為空地面積的一半。試給出你的設(shè)計(jì)方案(要求:美觀,合理,實(shí)用,要給出詳細(xì)數(shù)據(jù))。這題是一道中考題,是應(yīng)用數(shù)學(xué)的典型實(shí)例,既培養(yǎng)學(xué)生解決問(wèn)題的能力又開(kāi)發(fā)他們的創(chuàng)新思維。學(xué)生討論得十分激烈,不斷有新的創(chuàng)意冒出來(lái),有的因無(wú)法操作而被別人否定,也有不少十分不錯(cuò)的設(shè)想。通過(guò)這次討論,我覺(jué)得每個(gè)學(xué)生都是有潛力可挖的,解決問(wèn)題的能力雖有強(qiáng)弱,但我們教師更應(yīng)該多培養(yǎng)多點(diǎn)撥多激勵(lì),以增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的自信心。
創(chuàng)設(shè)情境教學(xué)的主要方式
一,創(chuàng)設(shè)應(yīng)用性情境,引導(dǎo)學(xué)生自己發(fā)現(xiàn)數(shù)學(xué)命題(公理、定理、性質(zhì)、公式)
案例1在“均值不等式”一節(jié)的教學(xué)中,可設(shè)計(jì)如下兩個(gè)實(shí)際應(yīng)用情境,引導(dǎo)學(xué)生從中發(fā)現(xiàn)關(guān)于均值不等式的定理及其推論.
①某商店在節(jié)前進(jìn)行商品降價(jià)酬賓銷(xiāo)售活動(dòng),擬分兩次降價(jià).有三種降價(jià)方案:甲方案是第一次打p折銷(xiāo)售,第二次打q折銷(xiāo)售;乙方案是第一次打q折銷(xiāo)售,第二次找p折銷(xiāo)售;丙方案是兩次都打(p+q)/2折銷(xiāo)售.請(qǐng)問(wèn):哪一種方案降價(jià)較多?
②今有一臺(tái)天平兩臂之長(zhǎng)略有差異,其他均精確.有人要用它稱(chēng)量物體的重量,只須將物體放在左、右兩個(gè)托盤(pán)中各稱(chēng)一次,再將稱(chēng)量結(jié)果相加后除以2就是物體的真實(shí)重量.你認(rèn)為這種做法對(duì)不對(duì)?如果不對(duì)的話,你能否找到一種用這臺(tái)天平稱(chēng)量物體重量的正確方法?
學(xué)生通過(guò)審題、分析、討論,對(duì)于情境①,大都能歸結(jié)為比較pq與((p+q)/2)2大小的問(wèn)題,進(jìn)而用特殊值法猜測(cè)出pq≤((p+q)/2)2,即可得p2+q2≥2pq.對(duì)于情境②,可安排一名學(xué)生上臺(tái)講述:設(shè)物體真實(shí)重量為G,天平兩臂長(zhǎng)分別為l1、l2,兩次稱(chēng)量結(jié)果分別為a、b,由力矩平衡原理,得l1G=l2a,l2G=l1b,兩式相乘,得G2=ab,由情境①的結(jié)論知ab≤((a+b)/2)2,即得(a+b)/2≥,從而回答了實(shí)際問(wèn)題.此時(shí),給出均值不等式的兩個(gè)定理,已是水到渠成,其證明過(guò)程完全可以由學(xué)生自己完成.
以上兩個(gè)應(yīng)用情境,一個(gè)是經(jīng)濟(jì)生活中的情境,一個(gè)是物理中的情境,貼近生活,貼近實(shí)際,給學(xué)生創(chuàng)設(shè)了一個(gè)觀察、聯(lián)想、抽象、概括、數(shù)學(xué)化的過(guò)程.在這樣的問(wèn)題情境下,再注意給學(xué)生動(dòng)手、動(dòng)腦的空間和時(shí)間,學(xué)生一定會(huì)想學(xué)、樂(lè)學(xué)、主動(dòng)學(xué).
二,創(chuàng)設(shè)趣味性情境,引發(fā)學(xué)生自主學(xué)習(xí)的興趣
案例2在“等比數(shù)列”一節(jié)的教學(xué)時(shí),可創(chuàng)設(shè)如下有趣的情境引入等比數(shù)列的概念:
阿基里斯(希臘神話中的善跑英雄)和烏龜賽跑,烏龜在前方1里處,阿基里斯的速度是烏龜?shù)?0倍,當(dāng)它追到1里處時(shí),烏龜前進(jìn)了1/10里,當(dāng)他追到1/10里,烏龜前進(jìn)了1/100里;當(dāng)他追到1/100里時(shí),烏龜又前進(jìn)了1/1000里……
①分別寫(xiě)出相同的各段時(shí)間里阿基里斯和烏龜各自所行的路程;
②阿基里斯能否追上烏龜?
讓學(xué)生觀察這兩個(gè)數(shù)列的特點(diǎn)引出等比數(shù)列的定義,學(xué)生興趣十分濃厚,很快就進(jìn)入了主動(dòng)學(xué)習(xí)的狀態(tài).
三,創(chuàng)設(shè)開(kāi)放性情境,引導(dǎo)學(xué)生積極思考
案例3直線y=2x+m與拋物線y=x2相交于A、B兩點(diǎn),________,求直線AB的方程.(需要補(bǔ)充恰當(dāng)?shù)臈l件,使直線方程得以確定)
此題一出示,學(xué)生的思維便很活躍,補(bǔ)充的條件形形.例如:
①|AB|=;②若O為原點(diǎn),∠AOB=90°;
③AB中點(diǎn)的縱坐標(biāo)為6;④AB過(guò)拋物線的焦點(diǎn)F.
涉及到的知識(shí)有韋達(dá)定理、弦長(zhǎng)公式、中點(diǎn)坐標(biāo)公式、拋物線的焦點(diǎn)坐標(biāo),兩直線相互垂直的充要條件等等,學(xué)生實(shí)實(shí)在在地進(jìn)入了“狀態(tài)”.
四,創(chuàng)設(shè)直觀性圖形情境,引導(dǎo)學(xué)生深刻理解數(shù)學(xué)概念
案例4“充要條件”是高中數(shù)學(xué)中的一個(gè)重要概念,并且是教與學(xué)的一個(gè)難點(diǎn).若設(shè)計(jì)如下四個(gè)電路圖,視“開(kāi)關(guān)A的閉合”為條件A,“燈泡B亮”為結(jié)論B,給充分不必要條件、充分必要條件、必要不充分條件、既不充分又不必要條件以十分貼切、形象的詮釋?zhuān)瑒t使學(xué)生興趣盎然,對(duì)“充要條件”的概念理解得入木三分.
五,創(chuàng)設(shè)新異懸念情境,引導(dǎo)學(xué)生自主探究
案例5在“拋物線及其標(biāo)準(zhǔn)方程”一節(jié)的教學(xué)中,引出拋物線定義“平面上與一個(gè)定點(diǎn)F和一條定直線l的距離相等的點(diǎn)的軌跡叫做拋物線”之后,設(shè)置這樣的問(wèn)題情境:初中已學(xué)過(guò)的一元二次函數(shù)的圖象就是拋物線,而今定義的拋物線與初中已學(xué)的拋物線從字面上看不一致,它們之間一定有某種內(nèi)在聯(lián)系,你能找出這種內(nèi)在的聯(lián)系嗎?
此問(wèn)題問(wèn)得新奇,問(wèn)題的結(jié)論應(yīng)該是肯定的,而課本中又無(wú)解釋?zhuān)@自然會(huì)引起學(xué)生探索其中奧秘的欲望.此時(shí),教師注意點(diǎn)撥:我們應(yīng)該由y=x2入手推導(dǎo)出曲線上的動(dòng)點(diǎn)到某定點(diǎn)和某定直線的距離相等,即可導(dǎo)出形如動(dòng)點(diǎn)P(x,y)到定點(diǎn)F(x0,y0)的距離等于動(dòng)點(diǎn)P(x,y)到定直線l的距離.大家試試看!學(xué)生紛紛動(dòng)筆變形、拚湊,教師巡視后可安排一學(xué)生板演并進(jìn)行講述:
x2=y(tǒng)
x2+y2=y(tǒng)+y2
x2+y2-(1/2)y=y(tǒng)2+(1/2)y
x2+(y-1/4)2=(y+1/4)2
=|y+14|.
它表示平面上動(dòng)點(diǎn)P(x,y)到定點(diǎn)F(0,1/4)的距離正好等于它到直線y=-1/4的距離,完全符合現(xiàn)在的定義.
這個(gè)教學(xué)環(huán)節(jié)對(duì)訓(xùn)練學(xué)生的自主探究能力,無(wú)疑是非常珍貴的.
六,創(chuàng)設(shè)疑惑陷阱情境,引導(dǎo)學(xué)生主動(dòng)參與討論
案例6雙曲線x2/25-y2/144=1上一點(diǎn)P到右焦點(diǎn)的距離是5,則下面結(jié)論正確的是().
A.P到左焦點(diǎn)的距離為8
B.P到左焦點(diǎn)的距離為15
C.P到左焦點(diǎn)的距離不確定
D.這樣的點(diǎn)P不存在
教學(xué)時(shí),根據(jù)學(xué)生平時(shí)練習(xí)的反饋信息,有意識(shí)地出示如下兩種錯(cuò)誤解法:
錯(cuò)解1.設(shè)雙曲線的左、右焦點(diǎn)分別為F1、F2,由雙曲線的定義得
|PF1|-|PF2|=±10.
|PF2|=5,
|PF1|=|PF2|+10=15,故正確的結(jié)論為B.
錯(cuò)解2.設(shè)P(x0,y0)為雙曲線右支上一點(diǎn),則
|PF2|=ex0-a,由a=5,|PF2|=5,得ex0=10,
|PF1|=ex0+a=15,故正確結(jié)論為B.
然后引導(dǎo)學(xué)生進(jìn)行討論辨析:若|PF2|=5,|PF1|=15,則|PF1|+|PF2|=20,而|F1F2|=2c=26,即有|PF1|+|PF2|<|F1F2|,這與三角形兩邊之和大于第三邊矛盾,可見(jiàn)這樣的點(diǎn)P是不存在的.因此,正確的結(jié)論應(yīng)為D.
進(jìn)行上述引導(dǎo),讓學(xué)生比較定義,找出了產(chǎn)生錯(cuò)誤的在原因即是忽視了雙曲線定義中的限制條件,所以除了考慮條件||PF1|-|PF2||=2a,還要注意條件a<c和|PF1|+|PF2|≥|F1F2|.
通過(guò)上述問(wèn)題的辨析,不僅使學(xué)生從“陷阱”中跳出來(lái),增強(qiáng)了防御“陷阱”的經(jīng)驗(yàn),更主要地是能使學(xué)生參與討論,在討論中自覺(jué)地辨析正誤,取得學(xué)習(xí)的主動(dòng)權(quán).
總之,切實(shí)掌握好創(chuàng)設(shè)情境教學(xué)的原則、重視創(chuàng)設(shè)情境教學(xué)過(guò)程的特性,合理應(yīng)用創(chuàng)設(shè)情境教學(xué)的方式,充分重視“情境教學(xué)”在課堂教學(xué)中的作用,通過(guò)精心設(shè)計(jì)問(wèn)題情境,不斷激發(fā)學(xué)習(xí)動(dòng)機(jī),使學(xué)生經(jīng)常處于“憤悱”的狀態(tài)中,給學(xué)生提供學(xué)習(xí)的目標(biāo)和思維的空間,學(xué)生自主學(xué)習(xí)才能真正成為可能.在日常的教學(xué)工作中,不忘經(jīng)常創(chuàng)設(shè)數(shù)學(xué)情境,引導(dǎo)學(xué)生自主學(xué)習(xí),動(dòng)機(jī)、興趣、情感、意志、性格等非智力因素起著關(guān)鍵的作用.把智力因素與非智力因素有機(jī)地結(jié)合起來(lái),充分調(diào)動(dòng)學(xué)生認(rèn)知的、心理的、生理的、情感的、行為的、價(jià)值的等方面的因素,讓學(xué)生進(jìn)入一種全新的情境境界,學(xué)生自主學(xué)習(xí)才能達(dá)到比較好的效果.這就需要在課堂教學(xué)中,做到師生融洽,感情交流,充分尊重學(xué)生人格,關(guān)心學(xué)生的發(fā)展,營(yíng)造一個(gè)民主、平等、和諧的氛圍,在認(rèn)知和情意兩個(gè)領(lǐng)域的有機(jī)結(jié)合上,促進(jìn)學(xué)生的全面發(fā)展.
參考文獻(xiàn):
1、皮連生《學(xué)與教的心理學(xué)》(華東師范大學(xué)出版社1997年)
2、柳斌《學(xué)校教育科研全書(shū)》(九州圖書(shū)出版社,人民日?qǐng)?bào)出版社1998年)
3、肖柏榮《數(shù)學(xué)教育設(shè)計(jì)的藝術(shù)》(《數(shù)學(xué)通報(bào)》1996年10月)
4、章建躍《關(guān)于課堂教學(xué)中設(shè)置問(wèn)題情境的幾個(gè)問(wèn)題》(《數(shù)學(xué)通報(bào)》1994年6月)
5、盛志軍《今天,我沒(méi)有完成授課計(jì)劃》(《數(shù)學(xué)教學(xué)》2004年第11期)
6、馮克誠(chéng)《中學(xué)數(shù)學(xué)研究:3+x中學(xué)成功教法體系⑧、⑨》(內(nèi)蒙古出版社,2000年9月)
7、錢(qián)軍光、過(guò)大維《從錯(cuò)誤中發(fā)現(xiàn)、在探索中建構(gòu)》(《數(shù)學(xué)教學(xué)》2004年第10期)
Abstract:Mathematicsteachingsituation’sestablishment,isreferstomathematicsteachingpresentstothecoursecontentusesthespecificmethod,achievesstimulatesthestudenttoassociate,theimaginationonowninitiative,positivelythethoughtthatobtainssomekindandthenewstudycontentrelatedimageorthethoughtachievement;Orcausesthestudenttohavesomekindofemotionexperience.Theconstructionprinciplebelievedthatthestudyistheknowledgeacquisitionprocess,theknowledgeisnotteachesthroughtheteacherobtains,butisthelearnerundercertainsituation,withtheaidofotherperson’shelp,usestheessentialstudymaterial,obtainsthroughthemeaningfulconstructionway.
keyword:Mathematicssituationteachingestablishmentestablishmentquestion
前言
《數(shù)學(xué)課程標(biāo)準(zhǔn)》也提出:數(shù)學(xué)學(xué)習(xí)“不僅要考慮數(shù)學(xué)自身的特點(diǎn),更應(yīng)遵循學(xué)生學(xué)習(xí)數(shù)學(xué)的心理規(guī)律,強(qiáng)調(diào)從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā)”,這充分說(shuō)明數(shù)學(xué)教學(xué)中創(chuàng)設(shè)問(wèn)題情境的重要性。那么,在創(chuàng)設(shè)數(shù)學(xué)情境時(shí)要注意哪些問(wèn)題呢?筆者結(jié)合自己的教學(xué)實(shí)踐,認(rèn)為以下幾個(gè)方面是值得教學(xué)者注意的:
一、“問(wèn)渠哪得清如許,為有源頭活水來(lái)”——引入情境要注重趣味性,以激發(fā)學(xué)生興趣
心理學(xué)認(rèn)為,學(xué)生只有對(duì)所學(xué)的知識(shí)產(chǎn)生興趣,才會(huì)愛(ài)學(xué),才能以最大限度的熱情投入到學(xué)習(xí)中去。因此,在教學(xué)中,教師要善于挖掘教材,積極創(chuàng)設(shè)生動(dòng)有趣的問(wèn)題情境來(lái)幫助學(xué)生學(xué)習(xí),培養(yǎng)學(xué)生對(duì)數(shù)學(xué)的興趣。
案例1:七年級(jí)下《游戲的公平與不公平》導(dǎo)入
師:今天,老師和大家做一個(gè)搶“30”的游戲,這個(gè)游戲在兩個(gè)人之間完成,規(guī)則如下:第一個(gè)人先說(shuō)“1”或“2”,第二個(gè)人要接著往下說(shuō)一個(gè)或兩個(gè)數(shù),然后又輪到第一個(gè)人,再接著往下說(shuō)一個(gè)或兩個(gè)數(shù),這樣兩人反復(fù)輪流,每次每人說(shuō)一個(gè)或兩個(gè)數(shù)都可以,但是不可以連說(shuō)三個(gè)數(shù)。說(shuō)到30為止。誰(shuí)先搶到30,誰(shuí)就獲勝。誰(shuí)來(lái)和老師比一比?
生1:老師,我來(lái)!
……
生2:老師,我和您比一比!
……
生2:老師,再來(lái)一次,我不相信我贏不了您!
……
(一連幾個(gè)學(xué)生都輸了,學(xué)生心有不甘。老師又和一個(gè)學(xué)生耳語(yǔ)了幾句。)
師:我收了個(gè)徒弟,誰(shuí)愿意和我的徒弟比一比?
(又一輪比賽開(kāi)始了,終于有學(xué)生發(fā)現(xiàn)了贏游戲的竅門(mén))
生3:老師,您這個(gè)游戲不公平。
師:為什么?
……
此例中,游戲不僅激發(fā)了學(xué)生的好勝心,也調(diào)動(dòng)了學(xué)生的學(xué)習(xí)熱情,使學(xué)生自然而然地進(jìn)入了學(xué)習(xí)。引入情境除了可引用游戲外,還可以是趣味性較強(qiáng)的名人軼事、歷史故事、數(shù)學(xué)趣題等。事實(shí)證明,貼近學(xué)生生活實(shí)際的、趣味性較強(qiáng)的情境,能很好地吸引學(xué)生的注意,最大程度地激發(fā)學(xué)生的學(xué)習(xí)欲望,培養(yǎng)學(xué)生學(xué)習(xí)興趣。
二、“不憤不啟,不悱不發(fā)”——情境創(chuàng)設(shè)應(yīng)注重引發(fā)學(xué)生的認(rèn)知沖突,激發(fā)學(xué)生內(nèi)在需要
情境的設(shè)計(jì)必須以引起學(xué)生的認(rèn)知沖突為基點(diǎn)才能引起學(xué)生的學(xué)習(xí)需要。教師根據(jù)新學(xué)知識(shí),方法特點(diǎn)及學(xué)生已有的認(rèn)知結(jié)構(gòu),設(shè)計(jì)一個(gè)包含新知識(shí)、新方法或新思維的新問(wèn)題情境(舊知識(shí),舊方法或習(xí)慣思維不能解決的),學(xué)生運(yùn)用舊知識(shí)、舊方法、習(xí)慣思維于新問(wèn)題情境時(shí)便會(huì)產(chǎn)生認(rèn)知沖突,由此產(chǎn)生疑問(wèn)和急需找到解決方法的內(nèi)在需要。在這種需要的驅(qū)使下,教師展開(kāi)教學(xué),則能收到事半功倍的教學(xué)效果。
案例2:《因式分解》的引入
先用多媒體演示酸奶中乳酸菌桿的營(yíng)養(yǎng),介紹活性乳酸桿菌在0℃~7℃的環(huán)境中存活是靜止的,但隨著溫度的升高,乳酸菌會(huì)快速死亡。然后請(qǐng)學(xué)生思考下面問(wèn)題:每升酸奶在0℃~7℃時(shí)含有活性乳酸桿菌220個(gè),在10℃時(shí)活性乳酸桿菌死亡了217個(gè),在12℃時(shí)又死亡了219個(gè),那么此時(shí)活性乳酸桿菌還剩多少個(gè)?請(qǐng)列出算式,并化簡(jiǎn)結(jié)果。
此例中,學(xué)生很容易列出算式220-217-219,呈現(xiàn)出較高的成就感,但怎么化簡(jiǎn)呢?學(xué)生不知所措。顯然,這是三個(gè)整數(shù)的減法,可以把三個(gè)乘方先算出來(lái),再相減,但這樣做不合題意,學(xué)生處在一個(gè)知其可為,但不知如何為的境地。此時(shí),認(rèn)知沖突已被引發(fā),學(xué)生有了急需找到解決方法的內(nèi)在需要。這時(shí),教師告訴學(xué)生,學(xué)習(xí)了《因式分解》后,我們就能很方便地解決這個(gè)問(wèn)題;而懸念的設(shè)置,無(wú)疑激發(fā)了學(xué)生的求知欲,為本節(jié)課的學(xué)習(xí)創(chuàng)設(shè)了良好的情緒狀態(tài)。
三、“紙上得來(lái)終覺(jué)淺,絕知此事要躬行”——圍繞問(wèn)題動(dòng)手實(shí)驗(yàn)也是一種情境
建構(gòu)主義認(rèn)為,動(dòng)手實(shí)踐與其他數(shù)學(xué)學(xué)習(xí)方式的合理配置和有效融合能夠營(yíng)造一種豐富多樣的數(shù)學(xué)學(xué)習(xí)情境,而這種情境可以讓學(xué)生初步體驗(yàn)將要學(xué)習(xí)的數(shù)學(xué)知識(shí),為理解數(shù)學(xué)知識(shí)做好準(zhǔn)備,為發(fā)現(xiàn)數(shù)學(xué)原理提供幫助,并且能夠?yàn)閷W(xué)生提供與數(shù)學(xué)有著直接的和重要作用的經(jīng)驗(yàn),以及情感性的支持。
案例3:在講授等腰三角形性質(zhì)的時(shí)候,有的老師設(shè)計(jì)了這樣的一個(gè)情境:讓學(xué)生做出一張等腰三角形的半透明的紙片(如圖),每個(gè)同學(xué)的等腰三角形的大小和形狀可以不一樣,把紙片對(duì)折,讓兩腰重合在一起,你發(fā)現(xiàn)什么現(xiàn)象?請(qǐng)你盡可能多地寫(xiě)出結(jié)論。
學(xué)生通過(guò)動(dòng)手操作、觀察、思考和交流寫(xiě)出了如下結(jié)論:
1.等腰三角形是軸對(duì)稱(chēng)圖形;
2.∠B=∠C;
3.BD=CD,即AD為底邊上的中線
4.∠ADB=∠ADC=90。,即AD為底邊上的高;
5.∠BAD=∠CAD,即AD為頂角平分線。
本例中,教師為學(xué)生提供了一個(gè)可感知,可操作,可體驗(yàn)的情境,既激發(fā)了學(xué)生的學(xué)習(xí)興趣,又使抽象的數(shù)學(xué)知識(shí)蘊(yùn)于簡(jiǎn)單的實(shí)驗(yàn)之中,促進(jìn)了學(xué)生的認(rèn)知理解。又如,在講授《旋轉(zhuǎn)的特征》時(shí),可讓學(xué)生動(dòng)手操作,從而得出“圖形的旋轉(zhuǎn)是由旋轉(zhuǎn)中心、旋轉(zhuǎn)角度和旋轉(zhuǎn)方向所決定”的結(jié)論??傊處煈?yīng)盡可能的為學(xué)生創(chuàng)設(shè)動(dòng)手實(shí)驗(yàn)情境,讓學(xué)生“學(xué)中做”,“做中學(xué)”,培養(yǎng)他們的動(dòng)手能力和創(chuàng)新精神,讓他們?cè)隗w驗(yàn)和感悟中成長(zhǎng)。
四、“逐層以深入,循序而漸進(jìn)”——探究
性教學(xué)中的情境設(shè)計(jì)要注重遞進(jìn)性
探究性教學(xué)中,教師一般都需要?jiǎng)?chuàng)設(shè)出多個(gè)情境,這些情境根據(jù)教學(xué)需要,在不同的時(shí)間以不同的方式呈現(xiàn)出來(lái)。由于探究性學(xué)習(xí)在總體上應(yīng)呈現(xiàn)由簡(jiǎn)單到復(fù)雜、由低級(jí)到高級(jí)的螺旋式上升發(fā)展趨勢(shì),這就要求創(chuàng)設(shè)的多個(gè)情境之間呈遞進(jìn)關(guān)系,要體現(xiàn)出層次性——既要防止步距過(guò)小,探究起來(lái)缺乏難度和挑戰(zhàn)性;也要防止步距過(guò)大,導(dǎo)致經(jīng)驗(yàn)獲得不足,探究脫節(jié)。
案例4:探索《勾股定理》(直角三角形三邊的關(guān)系)
情境1:讓學(xué)生觀察動(dòng)畫(huà),講述我國(guó)科學(xué)家曾向太空發(fā)射勾股圖試圖與外星人溝通的故事;講述2002年,國(guó)際數(shù)學(xué)家大會(huì)采用弦圖作為會(huì)標(biāo)。設(shè)問(wèn):它為什么會(huì)有如此大的魅力?它蘊(yùn)涵著怎樣迷人的奧秘呢?
情境2:用幾何畫(huà)板作一個(gè)直角三角形ABC(∠C=90°),量一量?jī)蓷l直角邊,斜邊的長(zhǎng)度;改變直角邊或斜邊的長(zhǎng)度,再量一量。多進(jìn)行幾次,并完成表格。你能發(fā)現(xiàn)什么規(guī)律?
情境3:展示格點(diǎn)圖(1),圖中的三個(gè)正方形之間存在怎么的關(guān)系?由此你能得出直角三角形三邊關(guān)系嗎?
情境4:展示格點(diǎn)圖(2),圖中的三個(gè)正方形之間存在怎樣的關(guān)系?由此你能得出直角三角形三邊關(guān)系嗎?
情境5:請(qǐng)學(xué)生拿出準(zhǔn)備好的四個(gè)完全相同的直角三角形,拼成一個(gè)正方形(不得有地方重合),你能根據(jù)面積與恒等式的知識(shí)得到直角三角形的三邊關(guān)系嗎?
此例中,情境1為引入情境,作用是提出研究對(duì)象,將學(xué)生注意導(dǎo)向新課的學(xué)習(xí),同時(shí)激發(fā)學(xué)生好奇心和學(xué)習(xí)興趣。情境2是通過(guò)量一量的方法,獲取數(shù)據(jù),并對(duì)數(shù)據(jù)中可能的數(shù)量關(guān)系進(jìn)行猜測(cè)。情境3,情境4是對(duì)情境2的猜測(cè)結(jié)果進(jìn)行驗(yàn)證,后者相對(duì)前者,更具一般性和更高的思維要求。情境5是對(duì)猜測(cè)結(jié)果的數(shù)學(xué)證明,也是對(duì)由前面情境所得知識(shí)的歸納和肯定。這一系列情境環(huán)環(huán)相扣,層層深入,引導(dǎo)學(xué)生完成探究,最終建構(gòu)起直角三角形三邊關(guān)系。事實(shí)證明,探究過(guò)程中遞進(jìn)性的情境鏈的設(shè)計(jì),能給學(xué)生綜合應(yīng)用觀察、操作、猜測(cè)、思考、討論、驗(yàn)證等多種活動(dòng)的機(jī)會(huì),極大地激發(fā)了學(xué)生的求知欲,豐富了學(xué)生的感知性,很好地培養(yǎng)了學(xué)生自主探究能力和創(chuàng)造性思維。
五、“運(yùn)用之妙,存乎一心”——情境創(chuàng)設(shè)應(yīng)追求高效益
情境的功能可體現(xiàn)為引入與過(guò)渡,吸引與調(diào)節(jié),支持與促進(jìn)。作為教學(xué)者,應(yīng)使情境的功能得到最大化的體現(xiàn),即在注重情境有效性時(shí),更要追求情境的高效益,以使課堂教學(xué)達(dá)到教學(xué)過(guò)程與方法的最優(yōu)化,提高教學(xué)效果,促進(jìn)學(xué)生可持續(xù)發(fā)展。
案例:錯(cuò)題的妙用
(分式的加減講完后,開(kāi)始練習(xí)。其中一題為:++
。老師請(qǐng)三位學(xué)生板演,其中生1,生2過(guò)程完整,結(jié)果正確。生3出現(xiàn)了問(wèn)題)
生3:原式=
(顯然錯(cuò)了。老師開(kāi)始點(diǎn)評(píng)生3練習(xí),學(xué)生轟笑)
師:錯(cuò)在哪里呢?
生4:原來(lái)的分母沒(méi)有了。
生5:把分式方程的變形(去分母)搬到解計(jì)算題上了。“張冠李戴”!
(生3眼睛不再看著黑板,低下了頭)
師:很好!生3由于粗心,把分式的加減當(dāng)方程來(lái)解了。解法雖然錯(cuò)了,但是可以給我們一個(gè)啟示,若將此題去掉分母來(lái)解,則其解法簡(jiǎn)潔快捷。因此,我們能否考慮利用解分式方程的方法來(lái)解它?
(生3的頭慢慢抬了起來(lái))
(學(xué)生討論,一個(gè)新穎的方法出來(lái)了)
解:設(shè)
去分母得,
解得:A=
學(xué)生:真巧妙!
師:確實(shí),生3的解法錯(cuò)了,但他這種“用方程的思想解分式計(jì)算題”,卻是一種尋求簡(jiǎn)便的思想,是將自己思維的真實(shí)展示,給了我們有益的啟示。
課堂教學(xué)是實(shí)施素質(zhì)教學(xué)的主陣地,提高學(xué)生的素質(zhì)是課堂教學(xué)的重要內(nèi)容,怎樣將“應(yīng)試教育”向“素質(zhì)教育”轉(zhuǎn)軌,怎樣變單純的“知識(shí)輸入”為“能力培養(yǎng)、智力開(kāi)發(fā)”,如何大面積提高中學(xué)的數(shù)學(xué)教學(xué)質(zhì)量,這是擺在我們廣大數(shù)學(xué)教師面前的一個(gè)重大課題。在眾多教學(xué)改革的原則中,主體性是素質(zhì)教育的核心和靈魂.在教學(xué)中要真正體現(xiàn)學(xué)生的主體性,就必須使認(rèn)知過(guò)程是一個(gè)再創(chuàng)造的過(guò)程,使學(xué)生在自覺(jué)、主動(dòng)、深層次的參與過(guò)程中,實(shí)現(xiàn)發(fā)現(xiàn)、理解、創(chuàng)造與應(yīng)用,在學(xué)習(xí)中學(xué)會(huì)學(xué)習(xí).使學(xué)生產(chǎn)生明顯的意識(shí)傾向和情感共鳴,乃是主體參與的條件和關(guān)鍵.
情境教學(xué)具有一定的代表性,它以?xún)?yōu)化的情境為空間,根據(jù)教材的特點(diǎn)營(yíng)造、渲染一種富有情境的氛圍,讓學(xué)生的活動(dòng)有機(jī)地注入到學(xué)科知識(shí)的學(xué)習(xí)之中。它講究強(qiáng)調(diào)學(xué)生的積極性,強(qiáng)調(diào)興趣的培養(yǎng),以形成主動(dòng)發(fā)展的動(dòng)因,提倡讓學(xué)生通過(guò)觀察,不斷積累豐富的表象,讓學(xué)生在實(shí)踐感受中逐步認(rèn)知知識(shí),為學(xué)好數(shù)學(xué)、發(fā)展智力打下基礎(chǔ)。簡(jiǎn)言之,情境教學(xué)以促進(jìn)學(xué)生整體能力的和諧發(fā)展為主要目標(biāo).結(jié)合本人十多年的教學(xué)經(jīng)驗(yàn)和近幾年在數(shù)學(xué)教學(xué)實(shí)踐中的探索,談?wù)勄榫辰虒W(xué)的一些體會(huì)
創(chuàng)設(shè)情境教學(xué)的原則
創(chuàng)設(shè)情境的方法很多,但必須做到科學(xué)、適度,具體地說(shuō),有以下幾個(gè)原則:
①要有難度,但須在學(xué)生的“最近發(fā)現(xiàn)區(qū)”內(nèi),使學(xué)生可以“跳一跳,摘桃子”.
②要考慮到大多數(shù)學(xué)生的認(rèn)知水平,應(yīng)面向全體學(xué)生,切忌專(zhuān)為少數(shù)人設(shè)置.
③要簡(jiǎn)潔明確,有針對(duì)性、目的性,表達(dá)簡(jiǎn)明扼要和清晰,不要含糊不清,使學(xué)生盲目應(yīng)付,思維混亂.
④要注意時(shí)機(jī),情境的設(shè)置時(shí)間要恰當(dāng),尋求學(xué)生思維的最佳突破口.
⑤要少而精,做到教者提問(wèn)少而精,學(xué)生質(zhì)疑多且深.
重視創(chuàng)設(shè)情境教學(xué)的特性
一、誘發(fā)主動(dòng)性:
傳統(tǒng)教育的弊端告誡我們:教育應(yīng)以學(xué)生為本。面對(duì)當(dāng)今新時(shí)期的青少年,服務(wù)于這樣一種充滿(mǎn)生氣、有真摯情感、有更大可塑性的學(xué)習(xí)活動(dòng)主體,教師決不可以越俎代庖,以知識(shí)的講授替代主體的活動(dòng)。情境教學(xué)就是把學(xué)生的主動(dòng)參與具體化在優(yōu)化的情境中產(chǎn)生動(dòng)機(jī)、充分感受、主動(dòng)探究。如在復(fù)習(xí)函數(shù)這節(jié)課時(shí),教師可以創(chuàng)設(shè)以下的教學(xué)情境:
案例:“我”在某市購(gòu)物,甲商店提出的優(yōu)惠銷(xiāo)售方法是所有商品按九五折銷(xiāo)售,而乙商店提出的優(yōu)惠方法是凡一次購(gòu)滿(mǎn)500元可領(lǐng)取九折貴賓卡。請(qǐng)同學(xué)們幫老師出出主意,“我”究竟該到哪家商店購(gòu)物得到的優(yōu)惠更多?問(wèn)題提出后,學(xué)生們十分感興趣,紛紛議論,連平時(shí)數(shù)學(xué)成績(jī)較差的學(xué)生也躍躍欲試。學(xué)生們學(xué)習(xí)的主動(dòng)性很好地被調(diào)動(dòng)了起來(lái)。活勢(shì)形成,學(xué)生們?cè)诓恢挥X(jué)中運(yùn)用了分類(lèi)討論的思想方法。
曾有人說(shuō):“數(shù)學(xué)是思維的體操”。數(shù)學(xué)教學(xué)是思維活動(dòng)的教學(xué)。學(xué)生的思維活動(dòng)有賴(lài)于教師的循循善誘和精心的點(diǎn)撥和啟發(fā)。因此,課堂情境的創(chuàng)設(shè)應(yīng)以啟導(dǎo)學(xué)生思維為立足點(diǎn)。心理學(xué)研究表明:不好的思維情境會(huì)抑制學(xué)生的思維熱情,所以,課堂上不論是設(shè)計(jì)提問(wèn)、幽默,還是欣喜、競(jìng)爭(zhēng),都應(yīng)考慮活動(dòng)的啟發(fā)性,孔子曰:“不憤不啟,不悱不發(fā)”,如何使學(xué)生心理上有憤有悱,正是課堂情境創(chuàng)設(shè)所要達(dá)到的目的。
二、強(qiáng)化感受性:
情境教學(xué)往往會(huì)具有鮮明的形象性,使學(xué)生如入其境,可見(jiàn)可聞,產(chǎn)生真切感。只有感受真切,才能入境。要做到這一點(diǎn),可以用創(chuàng)設(shè)問(wèn)題情境來(lái)激發(fā)學(xué)生求知欲。創(chuàng)設(shè)問(wèn)題情境就是在講授內(nèi)容和學(xué)生求知心理間制造一種“不和諧”,將學(xué)生引入一種與問(wèn)題有關(guān)的情境中。心理學(xué)研究表明:“認(rèn)知矛盾時(shí)動(dòng)機(jī)的根源?!闭n堂上,教師創(chuàng)設(shè)認(rèn)知不協(xié)調(diào)的問(wèn)題情境,以激起學(xué)生研究問(wèn)題的動(dòng)機(jī),通過(guò)探索,消除劇烈矛盾,獲得積極的心理滿(mǎn)足。創(chuàng)設(shè)問(wèn)題情境應(yīng)注意要小而具體、新穎有趣、有啟發(fā)性,同時(shí)又有適當(dāng)?shù)碾y度。此外,還要注意問(wèn)題情境的創(chuàng)設(shè)必須與課本內(nèi)容保持相對(duì)一致,更不能運(yùn)用不恰當(dāng)?shù)谋扔鳎焕趯W(xué)生正確理解概念和準(zhǔn)確使用數(shù)學(xué)語(yǔ)言能力的形成。教師要善于將所要解決的課題寓于學(xué)生實(shí)際掌握的知識(shí)基礎(chǔ)之中,造成心理上的懸念,把問(wèn)題作為教學(xué)過(guò)程的出發(fā)點(diǎn),以問(wèn)題情境激發(fā)學(xué)生的積極性,讓學(xué)生在迫切要求下學(xué)習(xí)。
案例:在對(duì)“等腰三角形的判定”進(jìn)行教學(xué)設(shè)計(jì)時(shí),教師可以通過(guò)具體問(wèn)題的解決創(chuàng)設(shè)出如下誘人的問(wèn)題情境:
在ABC中,AB=AC,倘若不留神,它的一部分被墨水涂沒(méi)了,只留下了一條底邊BC和一個(gè)底角∠C,請(qǐng)問(wèn),有沒(méi)有辦法把原來(lái)的等腰三角形重新畫(huà)出來(lái)?學(xué)生先畫(huà)出殘余圖形并思索著如何畫(huà)出被墨水涂沒(méi)的部分。各種畫(huà)法出現(xiàn)了,有的學(xué)生是先量出∠C的度數(shù),再以BC為一邊,B點(diǎn)為頂點(diǎn)作∠B=∠C,B與C的邊相交得頂點(diǎn)A;也有的是取BC中點(diǎn)D,過(guò)D點(diǎn)作BC的垂線,與∠C的一邊相交得頂點(diǎn)A,這些畫(huà)法的正確性要用“判定定理”來(lái)判定,而這正是要學(xué)的課題。于是教師便抓住“所畫(huà)的三角形一定是等腰三角形嗎?”引出課題,再引導(dǎo)學(xué)生分析畫(huà)法的實(shí)質(zhì),并用幾何語(yǔ)言概括出這個(gè)實(shí)質(zhì),即“ABC中,若∠B=∠C,則AB=AC”。這樣,就由學(xué)生自己從問(wèn)題出發(fā)獲得了判定定理。接著,再引導(dǎo)學(xué)生根據(jù)上述實(shí)際問(wèn)題的啟示思考證明方法。
除創(chuàng)設(shè)問(wèn)題情境外,還可以創(chuàng)設(shè)新穎、驚愕、幽默、議論等各種教學(xué)情境,良好的情境可以使教學(xué)內(nèi)容觸及學(xué)生的情緒和意志領(lǐng)域,讓學(xué)生深切感受學(xué)習(xí)活動(dòng)的全過(guò)程并升化到自己精神的需要,成為提高課堂教學(xué)效率的重要手段。這正象贊可夫所說(shuō)的:“教學(xué)法一旦觸及學(xué)生的情緒和意志領(lǐng)域,這種教學(xué)法就能發(fā)揮高度有效的作用?!?/p>
三、著眼發(fā)展性:
數(shù)學(xué)是一門(mén)抽象和邏輯嚴(yán)密的學(xué)科,正由于這一點(diǎn)令相當(dāng)一部分學(xué)生望而卻步,對(duì)其缺乏學(xué)習(xí)熱情。情境教學(xué)當(dāng)然不能將所有的數(shù)學(xué)知識(shí)都用生活真實(shí)形象再現(xiàn)出來(lái),事實(shí)上情境教學(xué)的形象真切,并不是實(shí)體的復(fù)現(xiàn)或忠實(shí)的復(fù)制、照相式的再造,而是以簡(jiǎn)化的形體,暗示的手法,獲得與實(shí)體在結(jié)構(gòu)上對(duì)應(yīng)的形象,從而給學(xué)生以真切之感,在原有的知識(shí)上進(jìn)一步深入發(fā)展,以獲取新的知識(shí)。
案例:在學(xué)習(xí)完了平行四邊形判定定理之后,如何進(jìn)一步運(yùn)用這些定理去判定一個(gè)四邊形是否為平行四邊形的習(xí)題課上.我先帶領(lǐng)學(xué)生回顧平行四邊形的定義以及四條判定定理:
1、平行四邊形定義:兩組對(duì)邊分別平行的四邊形是平行四邊形。
2、平行四邊形判定定理:
(1)兩組對(duì)邊分別相等的四邊形是平行四邊形。
(2)對(duì)角線相互平分的四邊形是平行四邊形。
(3)兩組對(duì)角分別相等的四邊形是平行四邊形。
(4)一組對(duì)邊平行且相等的四邊形是平行四邊形。
分析從這五條判定方法結(jié)構(gòu)來(lái)看,平行四邊形定義和前三條判定定理的條件較單一,或相等、或平行,而第四條判定定理是相等與平行二者兼有,如果將它看作是定義和判定(1)中各取條件的一部分而得出的話,那么從定義和前三條判定定理中每?jī)蓚€(gè)取其中部分條件是否都能構(gòu)成平行四邊形的判定方法呢?這樣我創(chuàng)設(shè)了情境,根據(jù)對(duì)第四條判定定理的剖析,使學(xué)生用類(lèi)比的方法提出了猜想:
1.一組對(duì)邊平行且另一組對(duì)邊相等的四邊形是平行四邊形。
2.一組對(duì)邊平行且一組對(duì)角相等的四邊形是平行四邊形。
3.一組對(duì)邊平行且對(duì)角線交點(diǎn)平分某一條對(duì)角線的四邊形是平行四邊形。
4.一組對(duì)邊相等且對(duì)角線交點(diǎn)平分某一條對(duì)角線的四邊形是平行四邊形。
5.一組對(duì)邊相等且一組對(duì)角相等的四邊形是平行四邊形。
6.一組對(duì)角相等且連該兩頂點(diǎn)的對(duì)角線平分另一對(duì)角線的四邊形是平行四邊形。
7.一組對(duì)角相等且連該兩頂點(diǎn)的對(duì)角線被另一對(duì)角線平分的四邊形是平行四邊形。
在啟發(fā)學(xué)生得出上面的若干猜想之后,我又進(jìn)一步強(qiáng)調(diào)證明的重要性,以使學(xué)生形成嚴(yán)謹(jǐn)?shù)乃季S習(xí)慣,達(dá)到提高學(xué)生邏輯思維能力的目的,要求學(xué)生用所學(xué)的5種判定方法去一一驗(yàn)證這七條猜想結(jié)論的正確性。
經(jīng)過(guò)全體師生一齊分析驗(yàn)證,最終得出結(jié)論:七條猜想中有四條猜想是錯(cuò)誤的,另外三個(gè)正確猜想中的一個(gè)尚待給予證明。學(xué)生在老師的層層設(shè)問(wèn)下,參與了問(wèn)題探究的全過(guò)程。不僅對(duì)知識(shí)理解更透徹,掌握更牢固,而且從中受到觀察、猜想、分析與轉(zhuǎn)換等思維方法的啟迪,思維品質(zhì)獲得了培養(yǎng),同時(shí)學(xué)生也從探索的成功中感到喜悅,使學(xué)習(xí)數(shù)學(xué)的興趣得到了強(qiáng)化,知識(shí)得到了進(jìn)一步發(fā)展。
四、滲透教育性:
教師要傳授知識(shí),更要育人。如何在數(shù)學(xué)教育中,對(duì)學(xué)生進(jìn)行思想道德教育,在情境教學(xué)中也得到了較好的體現(xiàn)。法國(guó)著名數(shù)學(xué)家包羅•朗之萬(wàn)曾說(shuō):“在數(shù)學(xué)教學(xué)中,加入歷史具有百利而無(wú)一弊的?!蔽覈?guó)是數(shù)學(xué)的故鄉(xiāng)之一,中華民族有著光輝燦爛的數(shù)學(xué)史,如果將數(shù)學(xué)科學(xué)史滲透到數(shù)學(xué)教學(xué)中,可以拓寬學(xué)生的視野,進(jìn)行愛(ài)國(guó)主義教育,對(duì)于增強(qiáng)民族自信心,提高學(xué)生素質(zhì),激勵(lì)學(xué)生奮發(fā)向上,形成愛(ài)科學(xué),學(xué)科學(xué)的良好風(fēng)氣有著重要作用。
教師應(yīng)根據(jù)教材特點(diǎn),適應(yīng)地選擇數(shù)學(xué)科學(xué)史資料,有針對(duì)性地進(jìn)行教學(xué)
案例:圓周率π是數(shù)學(xué)中的一個(gè)重要常數(shù),是圓的周長(zhǎng)與其直徑之比。為了回答這個(gè)比值等于多少,一代代中外數(shù)學(xué)家鍥而不舍,不斷探索,付出了艱辛的勞動(dòng),其中我國(guó)的數(shù)學(xué)家祖沖之取得了“當(dāng)時(shí)世界上最先進(jìn)的成就”。為了讓同學(xué)們了解這一成就的意義,從中得到啟迪,我選配了有關(guān)的史料,作了一次讀后小結(jié)。先簡(jiǎn)單介紹發(fā)展過(guò)程:最初一些文明古國(guó)均取π=3,如我國(guó)《周髀算經(jīng)》就說(shuō)“徑一周三”,后人稱(chēng)之為“古率”。人們通過(guò)利用經(jīng)驗(yàn)數(shù)據(jù)π修正值,例如古埃及人和古巴比倫人分別得到π=3.1605和π=3.125。后來(lái)古希臘數(shù)學(xué)家阿基米德(公元前287~212年)利用圓內(nèi)接和外接正多邊形來(lái)求圓周率π的近似值,得到當(dāng)時(shí)關(guān)于π的最好估值約為:3.1409<π<3.1429;此后古希臘的托勒玫約在公元150年左右又進(jìn)一步求出π=3.141666。我國(guó)魏晉時(shí)代數(shù)學(xué)家劉微(約公元3~4世紀(jì))用圓的內(nèi)接正多邊形的“弧矢割圓術(shù)”計(jì)算π值。當(dāng)邊數(shù)為192時(shí),得到3.141024<π<3.142704。后來(lái)把邊數(shù)增加到3072邊時(shí),進(jìn)一步得到π=3.14159,這比托勒玫的結(jié)果又有了進(jìn)步。待到南北朝時(shí),祖沖之(公元429~500年)更上一層樓,計(jì)算出π的值在3.1415926與3.1415927之間。求出了準(zhǔn)確到七位小數(shù)π的值。我國(guó)的這一精確度,在長(zhǎng)達(dá)一千年的時(shí)間中,一直處于世界領(lǐng)先地位,這一記錄直到公元1429年左右才被中亞細(xì)亞的數(shù)學(xué)家阿爾•卡西打破,他準(zhǔn)確地計(jì)算到小數(shù)點(diǎn)后第十六位。這樣可使同學(xué)們明白,人類(lèi)對(duì)圓周率認(rèn)識(shí)的逐步深入,是中外一代代數(shù)學(xué)家不斷努力的結(jié)果。我國(guó)不僅以古代的四大發(fā)明-------火藥、指南針、造紙、印刷術(shù)對(duì)世界文明的進(jìn)步起了巨大的作用,而且在數(shù)學(xué)方面也曾在一些領(lǐng)域內(nèi)取得過(guò)遙遙領(lǐng)先的地位,創(chuàng)造過(guò)多項(xiàng)“世界紀(jì)錄”,祖沖之計(jì)算出的圓周率就是其中的一項(xiàng)。接著我再說(shuō)明,我國(guó)的科學(xué)技術(shù)只是近幾百年來(lái),由于封建社會(huì)的日趨沒(méi)落,才逐漸落伍。如今在向四個(gè)現(xiàn)代化進(jìn)軍的新中,趕超世界先進(jìn)水平的歷史重任就責(zé)無(wú)旁貸地落在同學(xué)們的肩上。我們要下定決心,努力學(xué)習(xí),奮發(fā)圖強(qiáng)。
為了使同學(xué)們認(rèn)識(shí)科學(xué)的艱辛以及人類(lèi)鍥而不舍的探索精神,我還進(jìn)一步介紹:同學(xué)們都知道π是無(wú)理數(shù),可是在18世紀(jì)以前,“π是有理數(shù)還是無(wú)理數(shù)?”一直是許多數(shù)學(xué)家研究的課題之一。直到1767年蘭伯脫才證明了是無(wú)理數(shù),圓滿(mǎn)地回答了這個(gè)問(wèn)題。然而人類(lèi)對(duì)于π值的進(jìn)一步計(jì)算并沒(méi)有終止。例如1610年德國(guó)人路多夫根據(jù)古典方法,用262邊形計(jì)算π到小數(shù)點(diǎn)后第35位。他把自己一生的大部分時(shí)間花在這項(xiàng)工作上。后人為了紀(jì)念他,就把這個(gè)數(shù)刻在它的墓碑上。至今圓周率被德國(guó)人稱(chēng)為“路多夫數(shù)”。1873年英國(guó)的向客斯計(jì)算π到707位小數(shù),1944年英國(guó)曼徹斯特大學(xué)的弗格森分析了向克斯計(jì)算的結(jié)果后,產(chǎn)生了懷疑并決定重新算一次。他從1944年5月到1945年5月用了一整年的時(shí)間來(lái)做這項(xiàng)工作,結(jié)果發(fā)現(xiàn)向克斯的707位小數(shù)只有前面527位是正確的。后來(lái)有了電子計(jì)算機(jī),有人已經(jīng)算到第十億位。同學(xué)們要問(wèn)計(jì)算如此高精度的π值究竟有什么意義?專(zhuān)家們認(rèn)為,至少可以由此來(lái)研究π的小數(shù)出現(xiàn)的規(guī)律。更重要的是對(duì)π認(rèn)識(shí)的新突破進(jìn)一步說(shuō)明了人類(lèi)對(duì)自然的認(rèn)識(shí)是無(wú)窮無(wú)盡的。幾千年來(lái),沒(méi)有哪一個(gè)數(shù)比圓周率π更吸引人了。根據(jù)這一段教材的特點(diǎn),適當(dāng)選配數(shù)學(xué)史料,采用讀后小結(jié)的方式,不僅可以使學(xué)生加深對(duì)課文的理解,而且人類(lèi)對(duì)圓周率認(rèn)識(shí)不斷加深的過(guò)程也是學(xué)生深受感染,興趣盎然,這對(duì)培養(yǎng)學(xué)生獻(xiàn)身科學(xué)的探索精神有著積極的意義。
五、貫穿實(shí)踐性:
情境教學(xué)注重“情感”,又提倡“學(xué)以致用”,努力使二者有機(jī)地統(tǒng)一起來(lái),在特定的情境中和熱烈的情感驅(qū)動(dòng)下進(jìn)行實(shí)際應(yīng)用,同時(shí)還通過(guò)實(shí)際應(yīng)用來(lái)強(qiáng)化學(xué)習(xí)成功所帶來(lái)的快樂(lè)。數(shù)學(xué)教學(xué)也應(yīng)以訓(xùn)練學(xué)生能力為手段,貫穿實(shí)踐性,把現(xiàn)在的學(xué)習(xí)和未來(lái)的應(yīng)用聯(lián)系起來(lái),并注重學(xué)生的應(yīng)用操作和能力的培養(yǎng)。我們充分利用情境教學(xué)特有的功能,在拓展的寬闊的數(shù)學(xué)教學(xué)空間里,創(chuàng)設(shè)既帶有情感色彩,又富有實(shí)際價(jià)值的操作情境,讓學(xué)生扮演測(cè)量員,統(tǒng)計(jì)員進(jìn)行實(shí)地調(diào)查,搜集數(shù)據(jù),制統(tǒng)計(jì)圖,寫(xiě)調(diào)查報(bào)告,其教學(xué)效果可謂“百問(wèn)不如一做”,學(xué)生產(chǎn)生頓悟,求知欲得到滿(mǎn)足更加樂(lè)意投入到新的學(xué)習(xí)情境中去了。同時(shí)對(duì)學(xué)生思維能力、表達(dá)能力、動(dòng)手能力、想象能力、提出問(wèn)題和解決問(wèn)題的能力,甚至交際能力、應(yīng)變能力等等,都得到了較好的培養(yǎng)和訓(xùn)練。
案例:“三角形內(nèi)角和定理”就可以通過(guò)實(shí)踐操作的辦法來(lái)創(chuàng)設(shè)教學(xué)情境。學(xué)生的認(rèn)知結(jié)構(gòu)中,已經(jīng)有了角的有關(guān)概念,三角形的概念,還具有同位角、內(nèi)錯(cuò)角相等等有關(guān)平行線的性質(zhì)。這些都是學(xué)習(xí)新知識(shí)的“固著點(diǎn)”,但由于它們與“三角形內(nèi)角和定理”之間的邏輯聯(lián)系并不十分明顯,大部分同學(xué)都難以想到要對(duì)三角形的三個(gè)內(nèi)角之和進(jìn)行一番研究,這種情況下,我們可以創(chuàng)設(shè)這樣的數(shù)學(xué)情境:首先,在回顧三角形概念的基礎(chǔ)上,提出:“三角形的三個(gè)內(nèi)角會(huì)不會(huì)存在某種關(guān)系呢?”這是綱領(lǐng)性提問(wèn),對(duì)學(xué)生的思維還達(dá)不到確定的導(dǎo)向作用,學(xué)生可能會(huì)對(duì)角與角的相等、不等、兩角之和(差)與第三個(gè)角的大小比較等等問(wèn)題進(jìn)行研究,當(dāng)發(fā)現(xiàn)這些問(wèn)題只對(duì)某些特殊三角形有意義時(shí),他們的思維可能會(huì)指向“三個(gè)內(nèi)角的和是否有一定的規(guī)律?”我適時(shí)地提出:“請(qǐng)同學(xué)們畫(huà)一些三角形(包括銳角、直角、鈍角三角形),再用量角器量出三個(gè)角,觀察一下各三角形的三個(gè)內(nèi)角有什么聯(lián)系。”經(jīng)測(cè)量、計(jì)算,學(xué)生發(fā)現(xiàn)三個(gè)內(nèi)角的和都在180°左右。我再進(jìn)一步提出:“由于具體測(cè)量會(huì)有誤差,但和數(shù)都在180°左右,三角形的三個(gè)內(nèi)角之和是否為180°呢?請(qǐng)同學(xué)們把三個(gè)角拼在一起,看一看,構(gòu)成了一個(gè)怎樣的角?”學(xué)生在完成這一實(shí)驗(yàn)后發(fā)現(xiàn),三個(gè)內(nèi)角拼在一起構(gòu)成一個(gè)平角。經(jīng)過(guò)上述兩步實(shí)驗(yàn),提出“三角形的三個(gè)內(nèi)角之和為180°”的猜想就水到渠成了。接著,我指出了實(shí)驗(yàn)操作的局限性,并要求學(xué)生給出嚴(yán)格的邏輯證明。在尋找證明方法時(shí),我提出:“觀察拼接圖形,從中能得到什么啟示?”學(xué)生可憑借實(shí)踐操作時(shí)的感性經(jīng)驗(yàn),找到證明方法。實(shí)踐操作不但使學(xué)生獲得了定理的猜想,而且受到了證明定理的啟發(fā),顯示了很大的智力價(jià)值。又如:我在初三復(fù)習(xí)列方程解應(yīng)用題時(shí),為了讓學(xué)生明白學(xué)數(shù)學(xué)的主要目的是要培養(yǎng)思維和掌握解決問(wèn)題的能力,在課的最后出了一道開(kāi)放型命題:
將一個(gè)50米長(zhǎng)30米寬的矩形空地改造成為花壇,要求花壇所占的面積,恰為空地面積的一半。試給出你的設(shè)計(jì)方案(要求:美觀,合理,實(shí)用,要給出詳細(xì)數(shù)據(jù))。這題是一道中考題,是應(yīng)用數(shù)學(xué)的典型實(shí)例,既培養(yǎng)學(xué)生解決問(wèn)題的能力又開(kāi)發(fā)他們的創(chuàng)新思維。學(xué)生討論得十分激烈,不斷有新的創(chuàng)意冒出來(lái),有的因無(wú)法操作而被別人否定,也有不少十分不錯(cuò)的設(shè)想。通過(guò)這次討論,我覺(jué)得每個(gè)學(xué)生都是有潛力可挖的,解決問(wèn)題的能力雖有強(qiáng)弱,但我們教師更應(yīng)該多培養(yǎng)多點(diǎn)撥多激勵(lì),以增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的自信心。
創(chuàng)設(shè)情境教學(xué)的主要方式
一,創(chuàng)設(shè)應(yīng)用性情境,引導(dǎo)學(xué)生自己發(fā)現(xiàn)數(shù)學(xué)命題(公理、定理、性質(zhì)、公式)
案例1在“均值不等式”一節(jié)的教學(xué)中,可設(shè)計(jì)如下兩個(gè)實(shí)際應(yīng)用情境,引導(dǎo)學(xué)生從中發(fā)現(xiàn)關(guān)于均值不等式的定理及其推論.
①某商店在節(jié)前進(jìn)行商品降價(jià)酬賓銷(xiāo)售活動(dòng),擬分兩次降價(jià).有三種降價(jià)方案:甲方案是第一次打p折銷(xiāo)售,第二次打q折銷(xiāo)售;乙方案是第一次打q折銷(xiāo)售,第二次找p折銷(xiāo)售;丙方案是兩次都打(p+q)/2折銷(xiāo)售.請(qǐng)問(wèn):哪一種方案降價(jià)較多?
②今有一臺(tái)天平兩臂之長(zhǎng)略有差異,其他均精確.有人要用它稱(chēng)量物體的重量,只須將物體放在左、右兩個(gè)托盤(pán)中各稱(chēng)一次,再將稱(chēng)量結(jié)果相加后除以2就是物體的真實(shí)重量.你認(rèn)為這種做法對(duì)不對(duì)?如果不對(duì)的話,你能否找到一種用這臺(tái)天平稱(chēng)量物體重量的正確方法?
學(xué)生通過(guò)審題、分析、討論,對(duì)于情境①,大都能歸結(jié)為比較pq與((p+q)/2)2大小的問(wèn)題,進(jìn)而用特殊值法猜測(cè)出pq≤((p+q)/2)2,即可得p2+q2≥2pq.對(duì)于情境②,可安排一名學(xué)生上臺(tái)講述:設(shè)物體真實(shí)重量為G,天平兩臂長(zhǎng)分別為l1、l2,兩次稱(chēng)量結(jié)果分別為a、b,由力矩平衡原理,得l1G=l2a,l2G=l1b,兩式相乘,得G2=ab,由情境①的結(jié)論知ab≤((a+b)/2)2,即得(a+b)/2≥,從而回答了實(shí)際問(wèn)題.此時(shí),給出均值不等式的兩個(gè)定理,已是水到渠成,其證明過(guò)程完全可以由學(xué)生自己完成.
以上兩個(gè)應(yīng)用情境,一個(gè)是經(jīng)濟(jì)生活中的情境,一個(gè)是物理中的情境,貼近生活,貼近實(shí)際,給學(xué)生創(chuàng)設(shè)了一個(gè)觀察、聯(lián)想、抽象、概括、數(shù)學(xué)化的過(guò)程.在這樣的問(wèn)題情境下,再注意給學(xué)生動(dòng)手、動(dòng)腦的空間和時(shí)間,學(xué)生一定會(huì)想學(xué)、樂(lè)學(xué)、主動(dòng)學(xué).
二,創(chuàng)設(shè)趣味性情境,引發(fā)學(xué)生自主學(xué)習(xí)的興趣
案例2在“等比數(shù)列”一節(jié)的教學(xué)時(shí),可創(chuàng)設(shè)如下有趣的情境引入等比數(shù)列的概念:
阿基里斯(希臘神話中的善跑英雄)和烏龜賽跑,烏龜在前方1里處,阿基里斯的速度是烏龜?shù)?0倍,當(dāng)它追到1里處時(shí),烏龜前進(jìn)了1/10里,當(dāng)他追到1/10里,烏龜前進(jìn)了1/100里;當(dāng)他追到1/100里時(shí),烏龜又前進(jìn)了1/1000里……
①分別寫(xiě)出相同的各段時(shí)間里阿基里斯和烏龜各自所行的路程;
②阿基里斯能否追上烏龜?
讓學(xué)生觀察這兩個(gè)數(shù)列的特點(diǎn)引出等比數(shù)列的定義,學(xué)生興趣十分濃厚,很快就進(jìn)入了主動(dòng)學(xué)習(xí)的狀態(tài).
三,創(chuàng)設(shè)開(kāi)放性情境,引導(dǎo)學(xué)生積極思考
案例3直線y=2x+m與拋物線y=x2相交于A、B兩點(diǎn),________,求直線AB的方程.(需要補(bǔ)充恰當(dāng)?shù)臈l件,使直線方程得以確定)
此題一出示,學(xué)生的思維便很活躍,補(bǔ)充的條件形形.例如:
①|AB|=;②若O為原點(diǎn),∠AOB=90°;
③AB中點(diǎn)的縱坐標(biāo)為6;④AB過(guò)拋物線的焦點(diǎn)F.
涉及到的知識(shí)有韋達(dá)定理、弦長(zhǎng)公式、中點(diǎn)坐標(biāo)公式、拋物線的焦點(diǎn)坐標(biāo),兩直線相互垂直的充要條件等等,學(xué)生實(shí)實(shí)在在地進(jìn)入了“狀態(tài)”.
四,創(chuàng)設(shè)直觀性圖形情境,引導(dǎo)學(xué)生深刻理解數(shù)學(xué)概念
案例4“充要條件”是高中數(shù)學(xué)中的一個(gè)重要概念,并且是教與學(xué)的一個(gè)難點(diǎn).若設(shè)計(jì)如下四個(gè)電路圖,視“開(kāi)關(guān)A的閉合”為條件A,“燈泡B亮”為結(jié)論B,給充分不必要條件、充分必要條件、必要不充分條件、既不充分又不必要條件以十分貼切、形象的詮釋?zhuān)瑒t使學(xué)生興趣盎然,對(duì)“充要條件”的概念理解得入木三分.
五,創(chuàng)設(shè)新異懸念情境,引導(dǎo)學(xué)生自主探究
案例5在“拋物線及其標(biāo)準(zhǔn)方程”一節(jié)的教學(xué)中,引出拋物線定義“平面上與一個(gè)定點(diǎn)F和一條定直線l的距離相等的點(diǎn)的軌跡叫做拋物線”之后,設(shè)置這樣的問(wèn)題情境:初中已學(xué)過(guò)的一元二次函數(shù)的圖象就是拋物線,而今定義的拋物線與初中已學(xué)的拋物線從字面上看不一致,它們之間一定有某種內(nèi)在聯(lián)系,你能找出這種內(nèi)在的聯(lián)系嗎?
此問(wèn)題問(wèn)得新奇,問(wèn)題的結(jié)論應(yīng)該是肯定的,而課本中又無(wú)解釋?zhuān)@自然會(huì)引起學(xué)生探索其中奧秘的欲望.此時(shí),教師注意點(diǎn)撥:我們應(yīng)該由y=x2入手推導(dǎo)出曲線上的動(dòng)點(diǎn)到某定點(diǎn)和某定直線的距離相等,即可導(dǎo)出形如動(dòng)點(diǎn)P(x,y)到定點(diǎn)F(x0,y0)的距離等于動(dòng)點(diǎn)P(x,y)到定直線l的距離.大家試試看!學(xué)生紛紛動(dòng)筆變形、拚湊,教師巡視后可安排一學(xué)生板演并進(jìn)行講述:
x2=y(tǒng)
x2+y2=y(tǒng)+y2
x2+y2-(1/2)y=y(tǒng)2+(1/2)y
x2+(y-1/4)2=(y+1/4)2
=|y+14|.
它表示平面上動(dòng)點(diǎn)P(x,y)到定點(diǎn)F(0,1/4)的距離正好等于它到直線y=-1/4的距離,完全符合現(xiàn)在的定義.
這個(gè)教學(xué)環(huán)節(jié)對(duì)訓(xùn)練學(xué)生的自主探究能力,無(wú)疑是非常珍貴的.
六,創(chuàng)設(shè)疑惑陷阱情境,引導(dǎo)學(xué)生主動(dòng)參與討論
案例6雙曲線x2/25-y2/144=1上一點(diǎn)P到右焦點(diǎn)的距離是5,則下面結(jié)論正確的是().
A.P到左焦點(diǎn)的距離為8
B.P到左焦點(diǎn)的距離為15
C.P到左焦點(diǎn)的距離不確定
D.這樣的點(diǎn)P不存在
教學(xué)時(shí),根據(jù)學(xué)生平時(shí)練習(xí)的反饋信息,有意識(shí)地出示如下兩種錯(cuò)誤解法:
錯(cuò)解1.設(shè)雙曲線的左、右焦點(diǎn)分別為F1、F2,由雙曲線的定義得
|PF1|-|PF2|=±10.
|PF2|=5,
|PF1|=|PF2|+10=15,故正確的結(jié)論為B.
錯(cuò)解2.設(shè)P(x0,y0)為雙曲線右支上一點(diǎn),則
|PF2|=ex0-a,由a=5,|PF2|=5,得ex0=10,
|PF1|=ex0+a=15,故正確結(jié)論為B.
然后引導(dǎo)學(xué)生進(jìn)行討論辨析:若|PF2|=5,|PF1|=15,則|PF1|+|PF2|=20,而|F1F2|=2c=26,即有|PF1|+|PF2|<|F1F2|,這與三角形兩邊之和大于第三邊矛盾,可見(jiàn)這樣的點(diǎn)P是不存在的.因此,正確的結(jié)論應(yīng)為D.
進(jìn)行上述引導(dǎo),讓學(xué)生比較定義,找出了產(chǎn)生錯(cuò)誤的在原因即是忽視了雙曲線定義中的限制條件,所以除了考慮條件||PF1|-|PF2||=2a,還要注意條件a<c和|PF1|+|PF2|≥|F1F2|.
通過(guò)上述問(wèn)題的辨析,不僅使學(xué)生從“陷阱”中跳出來(lái),增強(qiáng)了防御“陷阱”的經(jīng)驗(yàn),更主要地是能使學(xué)生參與討論,在討論中自覺(jué)地辨析正誤,取得學(xué)習(xí)的主動(dòng)權(quán).
總之,切實(shí)掌握好創(chuàng)設(shè)情境教學(xué)的原則、重視創(chuàng)設(shè)情境教學(xué)過(guò)程的特性,合理應(yīng)用創(chuàng)設(shè)情境教學(xué)的方式,充分重視“情境教學(xué)”在課堂教學(xué)中的作用,通過(guò)精心設(shè)計(jì)問(wèn)題情境,不斷激發(fā)學(xué)習(xí)動(dòng)機(jī),使學(xué)生經(jīng)常處于“憤悱”的狀態(tài)中,給學(xué)生提供學(xué)習(xí)的目標(biāo)和思維的空間,學(xué)生自主學(xué)習(xí)才能真正成為可能.在日常的教學(xué)工作中,不忘經(jīng)常創(chuàng)設(shè)數(shù)學(xué)情境,引導(dǎo)學(xué)生自主學(xué)習(xí),動(dòng)機(jī)、興趣、情感、意志、性格等非智力因素起著關(guān)鍵的作用.把智力因素與非智力因素有機(jī)地結(jié)合起來(lái),充分調(diào)動(dòng)學(xué)生認(rèn)知的、心理的、生理的、情感的、行為的、價(jià)值的等方面的因素,讓學(xué)生進(jìn)入一種全新的情境境界,學(xué)生自主學(xué)習(xí)才能達(dá)到比較好的效果.這就需要在課堂教學(xué)中,做到師生融洽,感情交流,充分尊重學(xué)生人格,關(guān)心學(xué)生的發(fā)展,營(yíng)造一個(gè)民主、平等、和諧的氛圍,在認(rèn)知和情意兩個(gè)領(lǐng)域的有機(jī)結(jié)合上,促進(jìn)學(xué)生的全面發(fā)展.
參考文獻(xiàn):
1、皮連生《學(xué)與教的心理學(xué)》(華東師范大學(xué)出版社1997年)
2、柳斌《學(xué)校教育科研全書(shū)》(九州圖書(shū)出版社,人民日?qǐng)?bào)出版社1998年)
3、肖柏榮《數(shù)學(xué)教育設(shè)計(jì)的藝術(shù)》(《數(shù)學(xué)通報(bào)》1996年10月)
4、章建躍《關(guān)于課堂教學(xué)中設(shè)置問(wèn)題情境的幾個(gè)問(wèn)題》(《數(shù)學(xué)通報(bào)》1994年6月)
5、盛志軍《今天,我沒(méi)有完成授課計(jì)劃》(《數(shù)學(xué)教學(xué)》2004年第11期)
一、小學(xué)數(shù)學(xué)課堂設(shè)立情境教學(xué)
在小學(xué),學(xué)生大部分的學(xué)習(xí)時(shí)間是在課堂上,課堂教育是小學(xué)數(shù)學(xué)教育不可缺少的重要環(huán)節(jié),因此,課堂教育的質(zhì)量就和學(xué)生的學(xué)習(xí)質(zhì)量密切地聯(lián)系起來(lái),為了提高學(xué)生的學(xué)習(xí)質(zhì)量,教師可以先在生活中多與學(xué)生交流,了解學(xué)生的興趣愛(ài)好,然后,教師找一些數(shù)學(xué)題目,用學(xué)生喜歡的方式提問(wèn)出來(lái)。例如,小學(xué)生喜歡看動(dòng)畫(huà)片,喜歡聽(tīng)故事,因此,教師可以把一些應(yīng)用題或者算術(shù)題的名稱(chēng)改為學(xué)生喜歡的故事人物或者動(dòng)畫(huà)片人物來(lái)激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,對(duì)問(wèn)題自主思考,從而認(rèn)真地聽(tīng)講。教師也可以把學(xué)生分組,然后給各組學(xué)生相同的例題,比如,3+3+3用乘法怎么表示?看哪一組同學(xué)先完成,哪一組完成得又快又好?形成一種問(wèn)題競(jìng)賽來(lái)營(yíng)造一種競(jìng)爭(zhēng)的氛圍,讓每個(gè)學(xué)生都參與進(jìn)來(lái),然后教師應(yīng)在競(jìng)爭(zhēng)里加入適當(dāng)?shù)挠螒騺?lái)避免學(xué)生在搶答題目時(shí)的枯燥,使學(xué)生更全神貫注地?fù)尨饐?wèn)題,也更加喜歡學(xué)習(xí)數(shù)學(xué),通過(guò)競(jìng)爭(zhēng)情境的創(chuàng)設(shè),充分調(diào)動(dòng)學(xué)生的參與積極性和熱情,從而提高數(shù)學(xué)的教學(xué)質(zhì)量。
二、小學(xué)數(shù)學(xué)課堂教學(xué)的效果
在小學(xué)的數(shù)學(xué)教學(xué)開(kāi)設(shè)了很多新的課堂教學(xué)。例如,情境課堂教學(xué)、競(jìng)爭(zhēng)課堂教學(xué)等,這樣的一些新的課堂教學(xué)模式在課堂上的應(yīng)用,教師應(yīng)對(duì)每節(jié)課的課堂效果進(jìn)行分析,找到更適合學(xué)生學(xué)習(xí)數(shù)學(xué)的教學(xué)方法,在分析中使教師更了解學(xué)生,知道怎樣才能使學(xué)生時(shí)刻保持注意力集中,怎樣才能使學(xué)生自主思考數(shù)學(xué)難題,從而使課堂效果更佳完善。在此過(guò)程中,教師也提高了自身的專(zhuān)業(yè)水平,使教學(xué)質(zhì)量不斷提高,學(xué)生也在課堂里學(xué)會(huì)了怎樣做算術(shù)題,培養(yǎng)了主動(dòng)思考問(wèn)題的好習(xí)慣,在潛移默化中學(xué)生的數(shù)學(xué)成績(jī)突飛猛進(jìn),從而激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,把學(xué)習(xí)數(shù)學(xué)的狀態(tài)發(fā)揮到最佳。通過(guò)新的課堂教學(xué)在小學(xué)數(shù)學(xué)里的應(yīng)用,小學(xué)數(shù)學(xué)的課堂質(zhì)量的確在不同程度上得到了提高,也培養(yǎng)了學(xué)生非常好的學(xué)習(xí)習(xí)慣,使得小學(xué)數(shù)學(xué)的教學(xué)質(zhì)量更上一層樓。通過(guò)對(duì)小學(xué)數(shù)學(xué)教育的課堂教育的研究,發(fā)現(xiàn)新的課堂教育可以使小學(xué)數(shù)學(xué)教育的質(zhì)量顯著提高,因此,教師應(yīng)不斷地學(xué)習(xí),不斷創(chuàng)新出新的、適合學(xué)生的教學(xué)方法,時(shí)刻保證高效的課堂教學(xué)質(zhì)量。
作者:張彥霞 單位:石家莊市贊皇縣清河學(xué)區(qū)
2.創(chuàng)設(shè)生活情境,教學(xué)結(jié)合實(shí)際
小學(xué)生的思維正處于發(fā)育階段,其想象力和邏輯能力都是有限的,而數(shù)學(xué)又是一門(mén)抽象的學(xué)科,為了能夠讓學(xué)生更好的理解數(shù)學(xué)知識(shí),最好的方法就是將知識(shí)教學(xué)與實(shí)際生活相結(jié)合,因?yàn)椋钍秦S富多彩的,通過(guò)學(xué)生身邊發(fā)生的事和學(xué)生的經(jīng)歷,來(lái)進(jìn)行知識(shí)的教學(xué),會(huì)讓學(xué)生更容易接受、理解和掌握,學(xué)習(xí)效率自然而然的就會(huì)提升。例如,在學(xué)習(xí)長(zhǎng)方形與正方形的時(shí)候,就可以挖掘生活素材,利用生活中常見(jiàn)的長(zhǎng)方形和正方形的物體來(lái)進(jìn)行教學(xué),創(chuàng)設(shè)生活情境可以減輕學(xué)生對(duì)知識(shí)的陌生感,同時(shí),也讓學(xué)生從另一個(gè)教學(xué)來(lái)觀察我們生活的空間,讓學(xué)生明白,知識(shí)并不只是存在于書(shū)本之上,而是存在于生活當(dāng)中,生活中處處都有數(shù)學(xué),這樣能夠拉近數(shù)學(xué)知識(shí)與學(xué)生的距離,同時(shí),也讓學(xué)生擁有一雙發(fā)現(xiàn)知識(shí)的眼睛,學(xué)會(huì)從另一個(gè)角度來(lái)觀察我們生活的空間。創(chuàng)設(shè)生活情境是為學(xué)生搭建了一座連接知識(shí)與實(shí)際生活的橋梁,讓學(xué)生踴躍的投入到知識(shí)的海洋當(dāng)中,知識(shí)的學(xué)習(xí)不再是負(fù)擔(dān)、責(zé)任,而是一種幸福、快樂(lè),進(jìn)而讓學(xué)生愛(ài)上數(shù)學(xué),更好的進(jìn)行知識(shí)的學(xué)習(xí)。
二、利用數(shù)學(xué)故事,創(chuàng)設(shè)教學(xué)情境
數(shù)學(xué)這一學(xué)科有著漫長(zhǎng)的發(fā)展過(guò)程,是一門(mén)古老的學(xué)科.在人類(lèi)歷史的發(fā)展過(guò)程中,產(chǎn)生了許多關(guān)于數(shù)學(xué)的膾炙人口的故事以及數(shù)學(xué)家的軼事.以數(shù)學(xué)發(fā)展的歷史來(lái)創(chuàng)設(shè)教學(xué)情境,對(duì)于學(xué)生來(lái)說(shuō),不僅能夠激發(fā)學(xué)生的求知欲望,而且了解數(shù)學(xué)發(fā)展的歷史背景以及數(shù)學(xué)家的故事,能夠使學(xué)生更加領(lǐng)略到數(shù)學(xué)的奇妙之處,領(lǐng)略數(shù)學(xué)家的人格魅力,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.例如,在講“勾股定理”時(shí),教師可以講解為什么會(huì)有“勾三,股四,弦五”之說(shuō),以及數(shù)學(xué)家在得出這一數(shù)學(xué)結(jié)論中作出的貢獻(xiàn)等,讓學(xué)生對(duì)于勾股定理有想去了解和學(xué)習(xí)的沖動(dòng),為新的教學(xué)內(nèi)容作好鋪墊.
三、利用課堂數(shù)學(xué)實(shí)驗(yàn),創(chuàng)設(shè)教學(xué)情境
在數(shù)學(xué)教學(xué)中,許多概念是需要通過(guò)學(xué)生在生活中認(rèn)真觀察才能夠理解的.因此,在數(shù)學(xué)教學(xué)過(guò)程中,教師可以引導(dǎo)學(xué)生親自動(dòng)手操作,來(lái)感受數(shù)學(xué)知識(shí)形成的過(guò)程,更加生動(dòng)形象地讓學(xué)生體會(huì)數(shù)學(xué)、感受數(shù)學(xué).例如,在講“正方體、長(zhǎng)方體等立體圖形”時(shí),可能有的學(xué)生的想象能力并不是很好,這就需要學(xué)生動(dòng)手在課堂上制作具體的模型,觀察正方體到底有幾條棱,幾個(gè)頂點(diǎn),并且沿不同的棱剪開(kāi)得到什么樣的圖形,讓學(xué)生感受數(shù)學(xué)知識(shí)在自己的手中變化,加深印象;在講“對(duì)稱(chēng)圖形”時(shí),教師可以發(fā)給每個(gè)學(xué)生一張報(bào)紙,讓學(xué)生對(duì)折,并在紙上畫(huà)出自己喜歡的圖案,然后按照?qǐng)D案剪下來(lái),讓學(xué)生通過(guò)自己的操作來(lái)明白什么是軸對(duì)稱(chēng)圖形,讓學(xué)生在理解概念的時(shí)候不再是死記硬背,而是真正意義上的理解.這樣的課堂教學(xué),會(huì)增加課堂學(xué)習(xí)的有效性,使學(xué)生樂(lè)在其中.
二、要超越教材,但不可輕視教材
在傳統(tǒng)教學(xué)中,教師囿于教材,難以走出教材的“框框”,不敢越雷池半步,照本宣科,課堂氣氛沉悶,學(xué)生感受不到學(xué)習(xí)的快樂(lè)。數(shù)學(xué)教學(xué)內(nèi)容要源于教材,超越教材,要學(xué)會(huì)“用教材教”,要具有跳出來(lái)的智慧,對(duì)教材進(jìn)行補(bǔ)充、重組,教材為學(xué)生所用,所選素材要貼近學(xué)生的“最近發(fā)展區(qū)”。例如,在講“一元二次方程”時(shí),教師可以結(jié)合創(chuàng)建現(xiàn)代化教育學(xué)校的實(shí)際情況,對(duì)教材引入改編如下:我校為創(chuàng)建現(xiàn)代化教育學(xué)校,豐富校園文化氛圍,需設(shè)計(jì)一座2m高的人體雕塑,為達(dá)到最佳視覺(jué)效果,要求腰以上部分的高度與全部高度的乘積等于腰以下部分高度的平方,求雕像下部分的高度。有些教師輕視教材,認(rèn)為考試也不會(huì)考課本上的例題,沒(méi)必要對(duì)教材上的習(xí)題進(jìn)行挖掘。教材凝聚著專(zhuān)家學(xué)者的智慧,以蘇科版教材為例,無(wú)論是觀察、思考、實(shí)踐、操作、練習(xí)等都應(yīng)成為數(shù)學(xué)的重要資源。教師應(yīng)結(jié)合實(shí)際,對(duì)教材進(jìn)行適當(dāng)取舍,真正達(dá)到“用教材教”。
三、強(qiáng)調(diào)合作,但不能弱化思考
在數(shù)學(xué)學(xué)習(xí)中,學(xué)生面對(duì)難點(diǎn)、困惑點(diǎn)、易錯(cuò)點(diǎn)進(jìn)行合作交流,能彼此分享經(jīng)驗(yàn),相互溝通情感,解決學(xué)習(xí)中的困惑,實(shí)現(xiàn)共同提高。在合作學(xué)習(xí)中,學(xué)生擺脫獨(dú)生子女缺乏協(xié)作意識(shí)、獨(dú)自為陣的弊病,加強(qiáng)了學(xué)生之間的交往,通過(guò)相互啟發(fā)、相互討論、不斷生成、不斷構(gòu)建,從而創(chuàng)造性地完成學(xué)習(xí)過(guò)程。但有些教師一味地強(qiáng)調(diào)合作學(xué)習(xí),不論問(wèn)題是否經(jīng)過(guò)思考、不論問(wèn)題的難度是否適合,凡問(wèn)題必合作,失去了創(chuàng)設(shè)問(wèn)題情境的價(jià)值。例如,在講“二次函數(shù)y=a(x-h(huán))2+k”時(shí),學(xué)生已學(xué)習(xí)了二次函數(shù)的基本概念及y=ax2的圖象和性質(zhì),教師應(yīng)設(shè)法調(diào)動(dòng)學(xué)生的積極性,引導(dǎo)他們探究二次函數(shù)y=a(x-h(huán))2+k的性質(zhì)。教師要先復(fù)習(xí)y=ax2的圖象的開(kāi)口方向、對(duì)稱(chēng)軸、頂點(diǎn)坐標(biāo)等性質(zhì),然后提出問(wèn)題:函數(shù)y=-2(x+3)2-1是二次函數(shù)嗎?它的圖象是拋物線嗎?它的開(kāi)口方向、對(duì)稱(chēng)軸及頂點(diǎn)坐標(biāo)分別是什么?讓學(xué)生合作完成。如果學(xué)生缺失了獨(dú)立思考、自主探究的過(guò)程,在學(xué)習(xí)中思維就不可能深入。教師應(yīng)讓學(xué)生通過(guò)繪制此函數(shù)圖象,在畫(huà)圖的基礎(chǔ)上探究出其性質(zhì),在遇到困惑的過(guò)程中由小組討論解決。
四、問(wèn)題情境要聯(lián)系教材,也要貼近學(xué)生的認(rèn)知水平