緒論:寫作既是個人情感的抒發,也是對學術真理的探索,歡迎閱讀由發表云整理的11篇化學工程及技術范文,希望它們能為您的寫作提供參考和啟發。
化學工程最早產生于19世紀的歐洲,到20世紀石油的開采進一步發展,石油化工業興起。一戰后美國經濟迅速發展成化學工程領域的領跑者。二戰期間化學工程的作用大大的顯示出來,各種化學武器搬上戰場。原子彈的研發也是這期間化學工程領域突破性的進展。
20世紀60年代開始化學工程技術的應用領域進一步的擴展,已經從一些小型化工產品向著研究大型化工設備的方向前進,出現了許多能夠生產大量化工產品的大型裝置。60年代后,計算機開始應用到化學工程領域,極大地促進了化學工程技術的發展和進步。至此70年代以來各種高新的化學工程技術不斷地出現,化工領域的變化也稱得上是日新月異,取得了很大的成就。
二、化學工程技術在新世紀的發展趨勢
化學工程的迅速發展在中國已經成為一級工程學科,在新的世紀呈現與相關的學科交叉結合的趨勢。
1.化學工程與相關學科的交叉
1.1與高分子化學、高分子物理的交叉。化本文由收集整理學工程與高分子化學、高分子物理的交叉的學科工程就是所謂的材料化學工程。這一發展趨勢是將工程化學原理應用到材料的制造過程中,把自然資源的粗材料加工成精細的化工材料。這一發展趨勢的應用領域十分的廣泛,如農業中用的薄膜以及各種新型纖維,汽車器材的制造。
1.2與生物化學、微生物學的交叉。化學工程與生物化學、微生物學的結合就是生物化學工程,是將化學技術手段應用于生物技術的研究,生物科學實用化學技術手段轉化為能偶為人類使用的產品。化工原料的生產就是這一技術的主要應用領域,還有各種農藥、酶制劑以及氨基酸的生產,這些產品都是人們生活中必須要用到的。有了生物化學技術,更加方便了人們的生產生活。
1.3與有機化學、無機化學的交叉。化學工程與有機化學和無機化學的交叉學科就是精細化學工程。這一技術的主要應用領域是化肥的生產以及石化企業的石油精細化產品的加工生產。
1.4與環境學的交叉。當今社會經濟發展的同時環境的保護也越來越得到重視,不斷發展的化學工程技術也要注意到環境的發展,這就是環境化學工程。目前主要應用于一些無公害產品的生產,以及凈化環境技術的研究。
1.5與物理、微電子學的交叉。化學工程技術與各種電子產品的生產技術的結合,有利于各種微電子產品如硅、線路板的生產發展。
2.化學工程與數學、物理學、基礎化學進一步結合
2.1與數學的結合。當代化學的發展必須要掌握一定的數學工具,化學工程中非線性代數的應用越來越廣泛,表明化學工程技術與近代數學的進一步結合。
2.2與物理學的結合。化學工程技術與物理學的進一步結合體現在x光衍射、氣相色譜程序以及電鏡等高科技產品的研發和利用方面。
2.3與物理化學、生物化學的進一步結合。化學工程技術與物理化學、生物化學學的結合主要體現在人力學參數的預測和生物環境的治理上,通過與生物化學學技術的深層次結合,是這兩項技術有了很大的進展。
三、促進化學工程技術發展的對策
1.著眼全局提高化學工程技術水平
化學工程科學近年來的發展趨勢已經明顯地呈現與多學科交叉的現象,要進一步促進化學工程技術的進步,就要從全局出發綜合考慮與化學工程交叉的各個領域的情況。要統籌考慮各個領域的運用,做好整體的規劃,協調各項科學的開發利用。并且統籌現有領域的同時積極開拓新的研究領域,使各個學科領域相互促進,最后實現共同發展。
2.提高化學工程機械設備研究水平
機械設備是提高一項技術必須具備的,先進的機械設備能為更高水平的技術研究硬件支持。但是相對而言,目前化學工程技術方面的機械設備還比較落后,應該加強研究力度,向世界化學工程技術研究的機械水平靠近。有了這些高科技水平的機械設備,在化學工程技術領域趕超世界水平指日可待。
3.做好化學工程技術的教育工作
任何一項技術的發展都不能離開高水平的人才,所以要促進化學工程技術進一步發展需要加強化學工程領域的教育培訓工作。不僅需要培養化學工程技術方面的知識,與其相關的學科的教育與培訓也要加強。不僅僅培訓理論知識,更要加強學生的實踐能力,為化學工程技術的發展儲備人才。
4.積極開拓化學工程技術的應用市場
我們所謂的溫室氣體,主要指的就是二氧化碳。無論是以往的科技革命和工業革命之前的生產,還是現階段科技含量高,日趨現代化、國際化的社會化大生產,這些工廠每年要向大氣排放數萬甚至數十萬噸的二氧化碳。這些二氧化碳氣體的排放,成為了造成全球性的溫室效應的罪魁禍首。而在應對氣候變化的法律法規出臺之前的相當長的一段時期內,造成這一現象的那些工廠卻不用為溫室效應負擔任何一點費用現在這一狀況已經得到了明顯的改善,許多化工企業正積極的開發和利用新的科學技術,來達到減少二氧化碳排放量的目的。甚至有一些企業將二氧化碳作為化工產品生產過程中的一種原材料來使用。例如,有的化工企業將其他化工產品的生產過程中所產生的二氧化碳氣體作為一種原材料來生產尿素。僅這一種工藝,就可以使該企業的每年的二氧化碳氣體排放量減少數十萬噸。
2 化學工程技術使可持續發展戰略任務逐步向前推進
傳統的化工生產,給我們的生活創造了非常豐富的物質基礎和能源。其在對人類歷史的發展進步的工程中所做的貢獻是不不忽略的。但是昵,又由于化工產品生產的原材料和生產過后的殘余物中,存在著大量的有毒有害物質,這些物質又造成了很多環境污染問題以及生態平衡的失調。這樣,就又阻礙了社會經濟的繼續發展。新世紀,面對嚴峻的環境污染所提出的挑戰,可持續發展戰略這種道路的選擇,成為了歷史的必然。實現社會經濟的可持續發展,已經成為了我國的一項基本的國策。作為社會經濟的重要組成部分的化學工業,在這一基本國策的指導之下,最行之有效的實現可持續發展戰略的方法便是綠色化學的開發和利用。綠色化學,不單單是指那些對環境產生的有害影響小甚至沒有有害影響的化學生產過程,更重要的是包括那些行之有效的且作用明顯的價格平民化的化學化工技術的研究以及應用。綠色化學的生產過程只產生非常少量的廢物處理,或者不產生廢物處理。其最主要的特點便是在生產的過程中,最大程度地充分利用資源,使原材料轉化為產品,盡量不產生污染。有利于化學化工產業的發展以及可持續發展戰略這一道路的切實執行。
3 化學工程技術的新熱點
3.1 化學超臨界反應技術
超臨界的化學反應技術是指反應過程中的溫度和壓力都在臨界點之上,這樣的狀態往往是液體和氣體之間。這樣形式的存在被廣泛運用到生物化工、食品、醫藥等領域,已經顯示出很好的效益,發展前景很好,但近年來的探究和發展階段仍處于初級,待進一步深入研究。
3.2 綠色化學研究技術
綠色化學由于能夠有效避免對環境的污染,近年來備受推崇。綠色化學就是指利用化學反應技術來充分利用資源、減少污染物的產生來起到對環境的保護。比如,它可以對產生污染物的相關溶劑和廢料進行處理,利用原子技術或高選擇性的化學反應生產處對環境有利的產品,這不僅能夠增加經濟效益而且帶來可觀的社會效益。
3.3 分離技術的新研究
首先,分離技術強調對生產設備的強化,其次是生產技術。總結來說就是將設備更新,將生產率提高的技術都屬于化學分離技術的結果。古老的分離技術方法是利用各種材料沸點不同將其分離然后做研究。隨著科學技術的發展和各領域研究合作分工改變為分離技術新發展提供了廣闊的前景。比如近年來,在力學的傳遞以及多相流方面,采用信息技術發生分離,還有分子的模擬就很大的提高了預測熱力學平衡的水平,對分子的人為設計加速了分離等等。因此進一步研究高效的分離技術有著深遠的意義。
4 傳熱過程新的研究發展方向
4.1 傳熱學中細微尺度的研究進展
細微尺度是指從時間尺度和空間尺度進行更細微的研究的熱學范疇,如今它在熱學中已經形成了一個分支,具有廣闊的發展前景。當一個物體的尺寸遠大于其載體時,這樣的情況會存在,但是由于尺寸的更加細微,原來的假設影響因素也會發生相應變化。目前納米技術已經取得顯著的成績,很多領域都是圍繞傳熱學中的細微尺度技術進行研究的,近年來取得了高集成電路、多空介質流等新成果,產生了巨大的經濟效益。
4.2 傳熱設備的研究進展
近些年來,利用翹片來強化傳熱,管外的翹片強化傳熱原理包括有前緣效應和非穩定性擾動以及減薄邊界層等幾種。常用的片是沖縫片和百葉窗。將來對此的研究應該將分布參數和場地模擬相結合,來優化傳熱裝置結構的參數,實現管翹式的傳熱針設計。
4.3 與計算機技術的相結合
計算機技術的不斷進步是化學中大量的技術問題能夠得到有效的解決。同時節約了大量的人力物力財力,也增加了數據和相關機械的精密度。計算機的主要貢獻表現在計算流體力學、數值傳熱力學、采用計算機技術進行統計、計算有利于將數據更直觀的表現出來,表現形式更加多樣,能夠有效分析大量實驗數據。
4.4 與材料科學和信息工程相結合
1概述
隨著我國社會經濟的快速發展,各種化學制品已經充斥在我們周圍,成為我們日常生產生活中不可或缺的基本物品。然而,這些物品的原材料生產,都是來自于化學工程與工藝。化學工程與工藝是通過對化學材料的處理,從而實現了化學生產的環保資源的高效優化,生產過程也變得非常完善。尤其是當前,經濟的快速發展也隨之帶來了嚴重的環境污染問題,化學工程與工藝更是要朝著綠色環保的方向發展,尤其是與化學工程工藝相關而且環境問題息息相關的行業,例如石油化工行業、材料化工行業、生物化工行業等,這些都是利用化學工程與工藝的技術來帶動經濟發展的行業,對于我國社會的經濟發展來說,具有非常重要的現實意義。所以利用高新科技實現的化學工程與工藝,不僅有利于科學的發展和進步,而且對于經濟可持續發展來說意義重大。尤其是目前化學工程與工藝正朝著高精化、自動化、數字信息化的方向發展,加強對化學工程工藝的研究是非常有必要的。
2化學工程工藝
化學工程與工藝是涵蓋冶煉、藥物生產、食品加工、材料化工、印刷業等多行業一門科學,其實現是以化學的基本理論知識為基礎的,具有工業特色的技術。化學工程工藝涵蓋了原有化學的理論知識,結合了現代最新的環保思想和理念,對于促進社會的發展、人類的進步、經濟的可持續化來說意義重大。目前環境保護越來越被人們所看重,也是人們在物質經濟條件逐漸優越的前提下追求更高質量生活的體現。而化學工程工藝的相關研究,這實現環保節能、優化工業生產過程、提升社會經濟發展的重要途徑,它的出現,能夠使人們在減能節排的前提下使其經濟利益最大化,也是目前更多企業愿意嘗試和追求的環保生產途徑。科技的發展帶動社會的進步,經濟的提升勢必會對自然環境造成破壞,在綠色環保、減能節排的前提下,化學工程工藝勢必為社會可持續發展帶來新的契機,這對于社會發展來說,具有非常重要的現實意義。新型的化學工程工藝與傳統的化工相比,更加注重環境保護,更加看重生產效率,例如綠色化工技術、最新的分離技術以及超臨界流體萃取技術等,都是當前化學工程工藝最新興的生產技術。
3綠色化工技術
綠色環保、節能減排是當前企業工業生產一直看重和強調的生產方式,化學工程工藝中的綠色化工技術,則是對綠色環保的工業生產的最好的詮釋,綠色化學工程又被人成為環境優化化學工程,核心理念就是注重環境保護、降低環境污染、節能減排,從而實現環境污染與企業生產利益最大化之間的最佳平衡,對人類的健康和發展具有非常積極的意義。所以綠色化學工程工藝就是在化學工程過程中原材料選取、催化劑選用以及化學反應過程中都在強調綠色化工的理念,從而從化學工程生產的源頭阻止環境污染,促進廢物利用。
3.1選用綠色化學原料
綠色化工源頭做起就需要對化學工程的原材料入手,通過選擇綠色環保的、無害的化學化學物質作為企業生產的原材料,在根本上減少或消除化工生產的污染物的排放,進而將對環境污染源消滅在萌芽之中。當前,在企業生產中原材料的選取非常重要,尤其是在各種高新科技的快速發展下,各種化工原材料、催化劑、溶劑等都已經能夠加工成無毒無害或低毒少害的化學材料,所以在針對化學工程原材料選取時,盡量選擇使用高新技術生產的無毒無公害的原材料,或者采用天然的植物、農作物或其他很多自然生物作為企業生產的原材料,從而有效地促進化學工程原材料綠色化,從根本上消除自然環境污染源。
3.2選用綠色化學催化劑
在化學工業生產中,很多都需要催化劑來加速整個化學反應的過程,從而節約生產時間成本,提升經濟收益。然而,在傳統的化學工程生產過程中,很多催化劑雖然加速了化學反應的過程,但是在污染物生產和排放量等方面,都對環境造成了很嚴重的污染。目前在綠色化工技術中,大都采用天然無公害的催化劑的開發和使用,在化學工程中,盡量選擇無污染公害或少污染的催化劑替代傳統的污染重的催化劑,從而促進化學反應工程的綠色無公害。目前,部分化學工程工藝研究人員發現一種烷基化固相催化劑,其在促進化學反應的過程中基本上能夠做到無污染物排放,同時能夠加大廢棄物的使用率,這對于企業綠色化工生產來說,將是一個很大的福音。
3.3選擇綠色的化學反應
在企業化工成產過程中,會有很多化學反應,而對于這些化學反應的選擇,盡量提升化學反應的選擇性,從而將化工過程中減少污染排放和能源消耗,使生產物更加純凈化、提取更加便捷。以石油化工生產為例,對于烴類的處理常常選擇氧化處理,這個操作會對生產物造成污染和破壞,所以在石油化工生產過程中,要盡量避免此種反應,通過優化化學反應的選擇性,選擇綠色生產,從而提升整個化學反應的綠色生產過程。
4化工分離技術
在化學工程工藝中,有很多物質都是混合的,對于化工企業的生產來說,是遠遠不能符合生產所需的,那么在化學工程工藝的物質分離技術,則是將物質進行凈化、提純的重要過程,是使物質從雜亂無章、無規律的變化,通過外在作用力,如壓力、重力、溫度、電磁場等作用下能夠有序的轉變的過程,而過程中是需要消耗能量的,而這種過程這是化學工程工藝中的物質分離技術。在化工分離技術中,應用最為廣泛的是蒸餾法,這種方法的實現是通過外在的燃料燃燒對物質進行加熱,通過混合物中不同物質的氣化溫度點,來充分掌握加熱溫度的變化,使得混合物的溫度在預期溫度點進行持續加熱,從而實現對應物質氣化分離。在我國,對于蒸餾分離的技術和工程實現,都已經積累了深厚的理論知識和豐富的應用實踐經驗,為我國的化工也生產做出了不可磨滅的貢獻。但是,蒸餾法整體來說速度比較慢,效率相對較低,所以在化學工程分離技術的實現中,目前推出了各種熱門的物質分離方法和技術,無論是在時間效率上、還是在生產成本上,都能很好地應用在企業化工生產過程中。
4.1膜分離技術
膜分離技術是當前化學工程工藝領域中,實現物質分離技術中比較流行的分離方法,在環保節能、低污染、高效率等諸多方面都表現出優異的性能。膜分離技術是以各種材質的膜作為基本的分離介質,膜的介質可以采用氣體材質、固體材質、液體材質或混合材質,最終構成一個膜兩邊互不連通的界面,根據其自身的滲透特性,在不同的外在作用力(例如重力、壓力、電磁場、滲透壓差)下,實現物質分離。按照膜不同材質劃分,常見的膜有包括支撐液膜、乳化液膜的液體材質膜以及無機材料膜、聚合物膜的固體材質膜,這些膜的材質、特性不同,最終實現的分離過程也不盡相同,有滲透、電滲析、微濾、液膜分離等,這些分離技術和過程在氣體干燥、廢水處理等方面廣泛應用,正式因為膜分離技術效率高、耗能少、工作條件需求低,也逐漸化學工程工藝中分離技術的主體。
4.2吸附技術
在分離技術發展迅速的今天,新型吸附技術也逐漸進入了物質分離工程中,通過變壓吸附、層析、模擬移動長等分離方法,新型的吸附技術也成為了分離技術中的新型技術,在工業制造和化工生產中起到非常重要的作用。
4.3反應分離耦合技術
反應分離耦合技術是提高生產效率、優化化學工程生產過程、降低生產成本中發揮越來越重要的作用。反應分離耦合技術是通過利用物質分離來促進反應或通過物質反應來促進分離的一種化工分離技術,整個技術的應用效率非常高,操作費用也很低。以醋化反應為例,該反應過程就是在精餾塔中進行可逆的醋化反應,利用精餾的反應來分離醋和水,同時逆向反應也能夠加強醋化過程,從而在原料成本等多方面節約成本。
5超臨界流體萃取技術
超臨界流體又稱為SCF,是SupercriticalFluid的縮寫,一般的氣體或液體在溫度或者壓力的持續變化下,達到某個臨界點就會發生氣體到液體的變化或者液體向氣體的變化,但是,超臨界流體是某種流體物質在達到臨界壓力點或溫度點時,如果持續提升外界條件,該流體密度不斷增加,但是并沒有真正發生液化或氣化的現象,此時的物體就成為超臨界流體,該流體既具有氣體的特性,又具有也提到特質,利用超臨界流體來實現物質分離的技術,則被稱為SCFE超臨界流體萃取技術,該技術目前被廣泛應用在食品加工、化學工程和企業生產、生物制藥等諸多領域。SCFE的超臨界流體萃取技術,是對混合物進行施加溫度或壓力的條件,從而使其進入超臨界狀態,進而使萃取物從其中分離出來,實現物質的分離。流體物質在超臨界狀態下,融合了氣體和液體的綜合特性,密度上比氣體大得多,一般與液體比較接近,但是粘性度方面則與氣體接近,比液體小得多,而且超臨界流體自身的溶解度非常高、而且很容易流動和擴散,而且在壓力或溫度的臨界點,能隨著外加條件的微小變化,密度則發生顯著變化,極易實現混合物中萃取物的提取和分離。利用超臨界流體萃取技術,一般是使用流體作為萃取物的溶劑,使其進入超臨界狀態,然后與物料進行接觸,使其中的萃取物溶于流體中,進而實現萃取物與物料的分離,而后降低外在施加條件,如降低壓力或溫度,流體密度發生變化,溶解度降低,萃取物則很容易從流體溶劑中解析出來,從而實現萃取物的分離。利用SCFE的超臨界流體萃取技術來實現物料萃取物的分離,在提取速率、萃取物兼容范圍等方面都非常優異,而且外在條件是通過溫度或者壓強的調節來實現對流體密度、溶解度的控制,從而能夠有效地實現萃取物的分離,而且提取萃取物的純度非常高,對于化工生產來說非常重要。其次,流體溶劑的選擇一般選擇二氧化碳流體,這種低溫、無氧環境的操作可以有效地分離熱敏或容易氧化的物質,此外,SCFE技術的實現,可以從固體或中液體中快速提取有效地萃取物成分,整個過程無污染、耗能少,而且對于有機物的分離提取和精致都有非常顯著的功效。
6總結
化學工程工藝是目前涵蓋冶煉、藥物生產、食品加工、材料化工、印刷業等多行業的專業學科,其實現的專業技術對于企業的生產來說具有非常重要的現實意義。在化學工程工藝中,常見的技術有綠色化工技術,該技術是從原材料、催化劑以及化學反應的過程中選取綠色無毒無公害的物質和反應選擇性來提升化工的低污染率,分離技術則是通過蒸餾分離、膜分離等分流技術來實現的化工材料的分離,超臨界流體萃取技術則是采用超臨界流體對物料中萃取物的提取,通過改變外在條件來實現萃取物的提取,從而實現物質分離。這些化學工程工藝都在為企業的生產、化工過程等起到非常重要的作用,為促進我國的經濟發展奠定了良好的技術基礎。
參考文獻:
[1]吳建穎.淺析化學工程與工藝[J].中小企業管理與科技(下旬刊),2013,(02).
[2]張楊.淺談化學工程技術在化學生產中的應用[J].科技創新與應用,2014,(08).
[3]謝若曦,趙陽.化學工程與工藝[J].民營科技,2012,(08).
[4]化學工程2011年(第39卷)第1-12期(總第263-274期)總目次[J].化學工程,2011,(12).
[5]李嫻,解新安.超臨界流體的理化性質及應用[J].化學世界,2010,(03).
[6]霍鵬,張青,張濱,郭超英.超臨界流體萃取技術的應用與發展[J].河北化工,2010,(03).
1.2新的分離技術。隨著世界各國經濟的快速增長,原有的分離技術已經無法滿足現代化學生產的需要,只能夠進行深層次的探討創新。所以,國內外一起合作共同研究除了大量的新分離技術。由于這些新的分離技術剛剛研究出來,剛剛投入到化學生產中,所以不是很完善,還存在著許多的問題。這項研究的相關分子蒸餾在理論上的探討比較少,也沒有深入研究、設計刮模式分子蒸餾器。但是隨著時代的發展,信息技術與科學技術的進步,分離技術在實際應用的過程中得到了極大的改善,取得了顯著的成果。后來,逐漸將信息技術融合到了分離技術當中,產生膜分離技術、超臨界分離技術、超聲提取等先進的新型分離技術。
1.3超臨界化學反應技術。超臨界化學反應技術是隨著綠色化學的發展而產生的,是一種以超臨界流體作為化學反應介質或反應物的新反應技術。因為這種反應物與臨界點相當接近,所以其反應速率相當快,已經廣泛的應用到了化學工業、生物工程、食品生產等領域當中,對這些領域的發展做出了巨大的貢獻。
2傳熱過程中的新研究
2.1傳熱理論研究進展。近幾年來,由于滴狀冷凝的實現與增長冷凝表面壽命等相關問題的影響,研究人員至今未將滴狀冷凝應用到實際的化學工業生產當中。現在的機械、石油化工以及航空航天技術仍然在使用沸騰傳熱方式,利用這種方式來進行工業生產。長期以來,人們一直致力于液體發生核態沸騰原因的探索,因為沸騰的形式多變又復雜,所以增加了研究的難度。尤其是在計算方面,更是存在一些嚴重的缺陷,使得計算的準確率極低,而且還需要大量的實驗做基礎。除此之外,水沸騰時會產生一些氣泡,這些氣泡會影響到加熱器的表面,使得計算的難度再次加大。這都是現階段急需解決的問題,也是現在研究的重點。
2.2微細尺度傳熱學研究進展。微細尺度作為現代熱學中的一個分支,主要是研究熱學的一些規律以及微細的探討,研究前景非常廣闊。在研究微細尺度傳熱學的過程中,如果所研究的物體尺寸遠遠比承載粒子的平均尺寸大,我們所假定的觀點依舊成立。但是由于我們研究的尺度比較微細,所以原來假定的那些影響因素會發生一些改變,導致液體流動的規律發生變化。隨著近幾年來納米技術不斷進步,逐漸受到人們的重視,生產中的諸多領域都在引用尺度微細傳熱學,如高度集成的電子設備、微型熱管等。
2.3強化傳熱過程的研究進展。要想優化傳熱過程,就必須從換熱設備方面進行研究分析,優化設備,從而提高傳熱效率。換熱設備主要就是進行熱量的傳遞,熱量傳遞有逆流、順流、交差流、混合流等四種方式,其中逆流過程中產生的溫差是最大的,順流產生的溫差是最小的。我們應該想辦法改進換熱設備,使其能夠持續對外放熱,以此達到本次研究的目的。例如:我們可以發明一些新的換熱設備,采用新的傳熱材料應用到設備當中;改進原有的傳熱設備生產工藝;參照原有的設計方案,結合現代的科學技術對方案進行優化等。
3化學工程未來發展動態
時代在進步,科技在發展,大量的科技產品及技術不斷出現在人們的視野當中,并且被廣泛的應用,這就給化學工程的研究提出了新的研究方向。那就是在今后的發展當中,如何給新技術的引用提供一些良好的服務及體系,并且將新形成的理論完善,使化學工程不斷進步,朝著新的目標發展。其次,現在主張全面發展,我們應該研究一下信息、生物、能源、環境等方面的技術,將這些與化學向結合,為化學工程的發展做出良好的鋪墊。
1、快速膨脹法,該方法主要用于固體顆粒狀的物質的制備;
2、壓縮抗溶劑發,主要用于制備微孔、微球類的物質,所以在藥物分子及聚合物共沉上應用較多,也較成熟;
3、抗溶劑法,通常該方法會應用在制備爆炸性物質和不溶于單一超臨界流體的有機物上等。除了以上在制備材料方面的突出貢獻,超臨界流體技術還在分析化學中大展拳腳。它與色譜技術相結合,能在色譜研究中得到比氣象色譜更高效,比液相色譜更精準的超臨界流體色譜。更由于它的高效和低成本使得超臨界流體技術在石油化工、環境保護還有醫藥化學等多個領域得到廣泛使用。
2綠色化學工程技術的應用
綠色化學指用化學的技術和方法,再結合其他學科的知識來減少或者消除化學對于人類的危害、社會的危害以及環境的危害。從源頭的原材料開始,到生產過程中的試劑和介質還有催化劑,到最后的產物及副產物都要求綠色、環保、無毒害,還有就是“原子經濟性”的“零排放”。像在綠色無毒原料控制方面,石油化工原料就可以改變成生物原料的。制作尼龍可以不用含苯的石油化工原料,改成生物原料,生物原料的淀粉及纖維素等在酶催化反映下也能形成己二酸,這樣一樣可以制作尼龍,而且對人體和環境都危害極小。再比如在反應過程中對介質、溶劑等的控制,也要求無毒無害,在有機反應中水就是很好的溶劑,不僅對環境無害還能節省到有機反應中的官能團的保護還有去保護等環節,所以也省工藝省時間了。還有反應中用的綠色催化劑,綠色催化劑能更加正對性,更加高效地參與化學反應,并且得到的副產物少。在有機合成反應中,綠色催化劑的應用顯得尤為重要。像不對稱合成反應中,催化劑不僅為化學農藥和精細化工提供反應需要的中間體,有的還能為反應提供綠色的合成技術。比如酶催化反應、氫酯化反應、還有不對稱酮反應等。
3化學工程技術中的傳熱研究
化學反應中傳熱的研究是化學工程的重要內容,因為它嚴重影響著一個反應的能耗,反應的進程等。在微細尺度傳熱研究中,由于尺度微細,原有的傳熱假設及會發生變化,其流動還有傳入的規律也會發生變化。目前在納米、微米、集成電子設備還有微型熱管領域中該傳熱研究交深入,取得了較不錯的成果。而我們在改進傳熱工藝和設備上也做足了研究,為了提高傳熱效率,我們可以改進設備的性能,使其持續對外傳熱的能力提高,改變里面的傳熱材料和工藝的設計來實現傳熱的效率。然而我們現在投入很多精力的滴狀冷凝技術的研究還沒能取得很好的成果。由于我們不能在維持物質在滴狀的時候冷凝,同時冷凝表面壽命延長,所以目前這個難題還很難突破。還有就是我們在計算沸騰時的傳熱存在很多弊端,復雜的沸騰狀態不適用目前所有的傳熱計算方式,就研究沸騰傳熱的計算方法也是一大塊難題的,所以就滴狀傳熱技術的研究也將會是我們傳熱研究領域的一個重要課題,如果該研究獲得進展必將改變現在很多的化學生產工藝形式,將會帶領化學生產進入一個新的時代。
1 新型反應技術的研究
1.1 超臨界化學反應技術
超臨界液體是指在溫度和壓力都處于臨界點之上時,此時狀態處于液體和氣體之間,具有這兩種狀態的雙重性質。這種狀態的流體不僅在化學工業、生物化工、食品工業有廣泛的應用,而且還在醫藥工業等領域應用很廣泛,已經顯示出巨大的魅力,極具發展前景。近年來,化學界將超臨界水氧化法應用到保護環境的領域,但是都處于初級發展階段,很不成熟。
1.2 綠色化學反應技術
綠色化學是指對環境不會造成污染的,有利于保護環境的化學工程。綠色化學簡單說就是采取化學的技術和方法來減少或消除那些對人類有害的、妨礙社區安全的、對生態環境會產生不利影響的原料或溶劑等。綠色化學是將污染從源頭進行消除的工程,因此很徹底,這主要包含原子經濟性和高選擇性的反應,生產出對環境有利的材料,并且回收廢物循環利用的一門科學技術。
1.3 新的分離技術
從廣義上看,分離強化首先是對設備的強化,隨后對生產工藝進行強化,整體來說就是只要能將設備變小、將能量轉化效率提高的技術都是化工分離技術強化的結果,這樣不僅有利于實現可持續發展,同時也是化工分離技術的重要技術與主要趨勢之一。然而,古老的化工分離技術原理:利用沸點的不同,將不同的組分從分離塔里分離出來。隨著科技的發展及國內外的分工合作共同研究除了大量新的分離技術,具有廣闊的發展前景,但是這些在應用中同樣也存在著很多問題,此項研究對相關分子蒸餾的基礎理論探究比較少,沒有在理論上充分說明和指導,對設計刮膜式分子蒸餾器也沒有深入的研究。隨著信息技術和科學的不斷進步和發展,分離技術也隨之得到改善,取得了長足的進步,逐漸信息技術引入到分離技術的研究與開發上,例如在研究熱力學和傳遞的性質、多相流等方面,這些都是信息技術發生功效的主要分離技術,再如分子模擬大大提高了預測熱力學平衡和傳遞性質的水平。對分子的設計加速了可以加速分離,因此對研究和開發新的高效的分離劑有深遠的意義。信息技術的引進對于分離過程的深入產生了重要的作用,而且還能提高工作效率。
2 傳熱過程中一些新的研究進展和方向
2.1 微細尺度傳熱學研究進展
微細尺度是從空間尺度和時間尺度微細的探討和研究傳熱學規律,現在傳熱學中已經自成一個分支,發展前景廣闊。當物體的特征尺寸遠大于載體粒子的平均尺寸即連續介質時假定依然會成立,但是由于尺度的微細,原來的假設的影響因素也會相對的發生變化,這就導致了流動和傳入規律發生著變化。目前,微米、納米科學已經取得長足的進步,受到人們的廣泛關注,諸多領域都是圍繞微細尺度傳熱學進行研究的。其中高集成度電子設備、微型熱管、多空介質流動傳熱等多項研究都是微熱尺度傳熱學研究取得的豐碩成果。
2.2 強化傳熱過程的研究進展
這項研究主要是從改進換熱器設備的形式入手,提高傳熱的效率,并想辦法改進設備使其持續對外放熱,這種改進包含發明新的傳熱材料和改進生產工藝,將過去的設計進行優化等方法。
2.3 傳熱理論研究進展
近年來,傳熱研究者一直都致力于滴狀冷凝在工業生產上的應用,但至今仍未能很好的實現,主要問題是如何獲得實現滴狀冷凝,并且使其冷凝表面壽命延長。改變冷凝界面的性質,將滴狀冷凝應用到工業上進行傳熱改造是傳播熱學研究的主要熱點之一。沸騰的傳熱方式不僅在機械、動力和石油化工等傳統的工業之中廣泛使用,而且在航空航天技術等高科技領域也廣泛的應用著。長期以來,人們都在對液體發生核態沸騰的主要原因和具有高換熱強度的機理進行著深入的探究。由于沸騰的現象是復雜和多變的,這些都導致了我們不能利用常規的計算方法來計算出沸騰所能傳輸的熱量。到現在為止,加熱器表面受到水沸騰時產生的氣泡的影響,這一問題是最需要得到解決的,也是研究的重點所在,對沸騰傳熱進行計算大都采取機理模型,這種方法存在嚴重的缺陷就是計算的準確率很低,而且需要大量的實驗做基礎,所以目前應用的范圍較窄,目前沒有能較準確計算沸騰傳熱的計算式,因此我們有另辟蹊徑,從新的角度來探究和研究問題,從基本理論出發,提出新的理論與計算方法或研究出新的模型,將數學與之相結合計算出沸騰所傳出的熱量,這將成為今后研究的重中之重。
3 化學工程學科未來的發展動態
引言
化學工程是研究化學工業為代表的,是對石化工業的生產過程中有關化學過程與物理過程的原理和規律進行研究,并利用這些規律來解決工業裝置的建設。隨著石化工業的不斷發展,石化工業所涉及的范圍也越來越廣,因此重視化學工程技術的創新,并在石化工業裝置建設中得到實踐與發展是非常必要的。而同時,隨著石化工業裝置建設的發展,化學工程技術創新提供了必要的條件。
一、石化工業裝置建設中的主要改造的部分
在石化工業裝置中,工業爐是整個生產工藝中的重點設備,無論是煉油、有機原料的煉成和合成樹脂的工藝都需要借助不同工業爐完成。比如在煉油中,最為常見的石化工業裝置有裂解爐、轉化爐和加熱爐等。它們能夠按照不同的作用,不同的工藝要求,發揮不同的效果。但目前大多數的石化工業裝置仍然是根據其外形將工業爐分為五類:
1.管式加熱爐:按形狀分為圓筒爐、立式爐、箱型爐。管式爐爐體一般由鋼架及筒體(或箱體)組成,爐內襯有耐火材料和隔熱材料,還有爐管系統、爐配件和煙囪等部分。根據其受熱形式有純輻射式和輻射-對流式。管式加熱爐是石油化工行業最常用的爐型,以后各節主要圍繞管式加熱爐展開介紹。
2.立式反應爐:這類爐的爐體基本上是受壓容器,如甲烷化爐、中(低)溫變換爐、氣化爐、二段轉化爐等;另一部分類似平頂(底)或錐形頂(底)的常壓容器,如沸騰爐、蓄熱爐、煤氣發生爐等,爐體多數均有復雜的內件和襯耐火材料,催化劑填料等。
3.臥式旋轉反應爐:爐體呈臥式旋轉筒體,內部裝有螺旋輸運器或加熱爐管,外部有傳動及減速裝置,如HF旋轉反應爐等。
4.帶傳動、升降投料裝置的反應爐:這類爐設備類似容器,但外部有投料提升裝置,爐內有內襯或砌筑耐火和隔熱材料,如電熱爐等。
5.其他工業爐:焚燒爐:用于廢氣、廢液、廢渣的焚燒。將其中有害物質經焚燒轉化為無害物質排出。如污泥焚燒爐、硫磺回收裝置焚燒爐。干燥爐:用于干燥工藝物料。熱載體爐:塑料廠用的較多。當化學工程技術得到創新,石油化工裝置也需要做出相應的改變,以發揮化學工程技術的作用,提升自我生產率。所以為了進一步提升我國石油工業事業的發展,并且配合化學工程技術的創新發展,石化工業裝置的主體——工業爐也應該進行相應的改造。
二、化學工程技術創新在煉油方面的實踐與進展
1.催化裂化技術
在煉油裝置中的創新體現催化裂化是石油煉制過程之一,是在熱和催化劑的作用下使重質油發生裂化反應,轉變為裂化氣、汽油和柴油等的過程。催化裂化的主要工程需要在裂解爐中完成,裂解爐,主要以石油餾分為原料,進行熱裂解生產烯烴,其結構特征為:立管加熱裂解爐。裂解爐大多數為立式鋼架結構爐體,將幾種不同管徑組合成一組,爐底有油氣聯合噴嘴;對流室在頂部,為臥式盤管,預熱原料或燃料等。如今催化裂化技術已經成為石化工業裝置建設中的核心技術,是石化工業煉油都需要用到的一種方式。在這項技術中就體現了許多化學工程技術的創新之處,如自動開發的高效霧化噴嘴,PV高效旋風分離器、油漿旋液除塵和煙氣能量回收等。這些技術的創新與使用,很好的解決了煉油中長期存在的回收煙氣壓力、取出多余熱量等難題。有效的提升了煉油的效率和環保性,讓煉油取得了更好的經濟效益。
2.煉油裝置
煉油裝置中的核心部分為常壓裝置,是處理煉油的重要裝置。能有效提升其處理能力,降低能耗,提升拔除率。鎮海煉化與SEI對煉油裝置大型化開發應用了一系列化學工程創新技術,如在兩段閃蒸、三級蒸餾節能型常壓蒸餾技術應用其中,并使用真空技術來降低低壓降、高減壓的拔除率,是其研發出的煉油裝置成為目前國內最大的長減壓裝置。經過實際的投入運用,該常減壓設置的處理能力達到了102%,總拔除率達到了79.12%,整個裝置的能耗量低至每噸11千克標油。
3.催化重整技術創新
在煉油裝置中的體現催化重整是在催化劑的作用下,對油餾分中的烴類分子結構進行重新排列成新的分子結構的過程。石油在煉制的過程中需要在加熱、氫壓和催化劑發揮作用的共同環境中,讓原油中蒸餾所得的輕汽油餾分轉變成富含芳烴的高辛烷值汽油,并副產液化石油氣和氫氣的過程。催化重整中可以用作汽油調合組分,也可以使用芳烴抽提制取苯、甲苯和二甲苯,副產的氫氣是煉油廠中重要的氫氣來源。需要注意的是,制氫裝置轉化爐的結果與其他工業爐的結構不同,爐管里都裝有催化劑,并在關于制氫反應過程是在爐管內完成的。爐內溫度較高,達到1000°C,反應介質出口溫度為800°C左右。而催化重整技術的創新主要是在其中應用了新型再生器催化劑分布器,能均勻的分布下料,有效提升反應器的利用率和催化劑的再生治療。該技術在進氣方式及氣體分配流動技術也有所創新改進,通過改善氣體的軸向及徑向分流的均勻性及提升了氣體在徑向床成內的壓力降和氣體在軸向的壓力分布情況。這些技術方面的創新都有助于提升整個催化重整技術的效果。
4.新型塔板、填料和冷換設備
在改進煉油中相關的化學工程技術中,選擇合適的材料能有效保證創新技術的效果發揮,并能幫助煉油廠的合理成本管理。新型規整的填料或亂堆填料已經成為催化裂化中吸收穩定塔和常減壓塔的主要材料。高效換熱器也已經成為常減壓裝置的主要構件,其能很好的回收煙氣熱能,將熱爐熱效率提升到90%以上。此外,表面蒸發冷凝器、表面多孔管換熱器也已經在煉油裝置中得到廣泛的應用與普及。
三、化學工程技術創新在有機原料方面
1.乙烯成套技術
自“九五”計劃以來,我國乙烯事業就開始快速的發展,僅2000年中國石化集團公司的乙烯產量就達到287×104t,并且在乙烯成套技術方面有了很好的創新和發展。石化股份公司對裂解爐和分離工藝技術進行了創新改進,通過在文丘里管流量控制技術對裂解原料在眾多的輻射段爐管中的流量實現了精密的均勻分布控制;應用“濕壁”模型解決了廢熱鍋爐結焦的問題。此外,在底部供熱和側壁供熱中是由輻射段,建立有效的供熱模式系統,讓供熱更快、更為均勻。乙烯分離技術一直是化學工程技術集中度非常密集的一個范圍,并且對于乙烯大型化節能效果與深冷條件都有著非常嚴苛的要求。通過對該技術的不斷研究與創新,在通過多種考慮后,石化公司選擇中型乙烯作為乙烯分離技術創新、改進的切入點。如今該項技術已經成功的在石油化工中得到使用。
2.甲苯歧化和烷基轉移成套技術
甲苯歧化和烷基轉移技術是芳烴技術中的一個重要組成單元,是滿足石油化工對二甲苯需求的有效的措施之一。上海石油化工研究將HAT系列作為催化劑,并以此為基礎研制出大型軸向固定床反應器和反應器進口氣體分布器,以提升甲苯歧化反應的效率,并提升對二甲苯的回收率,滿足了石油化工對二甲苯日漸增大的需求。如今一套甲苯歧化和烷基轉移成套技術所使用的40×104t/a已經安全、穩定的使用了6年。
3.苯乙烯成套技術
在苯脫氫制成苯乙烯的成套技術中,乙苯脫氫軸徑向反應器是該項技術的創新點。對反應器中的原料與反應物料流向進行更合理、更環保、更節約的改進,能降低對催化劑的使用量,并提升乙苯烯的制成率。華東理工大學在6×104t/a和10×4t/a的反應器中進行多次實驗后,終于建立了兩維氣體的數學模型,并計算出反應器入口處軸向催化器的氣封高度。另外,也有研究發現使用新型的高效靜態混合器,是解決原有反應器入口處乙苯與水蒸氣在高溫和高速流動狀態發生的質量偏離及乙苯脫氫轉化率偏低的問題的最好方式。
4.化工型MTBE合成及裂解一體化成套技術
化工型MTBE合成及裂解一體化技術為制出高純度的聚合級異丁烯,上海石油化工研究院就以下兩點進行了創新:(1)使用帶有環柱形催化劑裝填構件,以實現深液層塔盤的催化蒸餾技術的使用;(2)在預反應器中是由外循環工藝,改變床層抽出的位置。這兩點的創新抓住了化工型MTBE合成及裂成一體化技術的關鍵所在,因此其所發生的效果也是顛覆性的。在MTBE裂解單元中使用固體酸裂解工藝技術,并適當的放大固定床反應器,并對裂解產物分離和精餾塔系進行合理的設計。目前該項技術已經得到很好的使用,以燕化公司為例,其所生產的高純度異丁烯很好的與丁基橡膠合成。
一、傳熱過程的一些新的研究進展和方向
1.微細尺度傳熱學研究進展
微細尺度是從空間尺度和時間尺度微細的探討和研究傳熱學規律,現在在傳熱學中已經自成一個分支,發展前景廣闊。當物體的特征尺寸遠大于載體粒子的平均尺寸即連續介質時假定依然會成立,但是由于尺度的微細,原來的假設的影響因素也會相對的發生變化,這就導致了流動和傳入規律發生著惟妙惟肖的變化。目前,微米、納米科學已經取得長足的進步,受到人們的廣泛關注,諸多領域都是圍繞微細尺度傳熱學進行研究的。其中高集成度電子設備、微型熱管、多空介質流動傳熱等多項研究都是微熱尺度傳熱學研究取得的豐碩成果。
2.傳熱設備研究進展
通過近十年的研究,利用翅片可以達到促進和增強傳熱的效果
3.強化傳熱過程的研究進展
這項研究主要是從改進換熱器設備的形式入手,提高傳熱的效率,并想辦法改進設備使其持續對外放熱,這種改進包括發明新的傳熱材料和改進生產工藝,將過去的設計進行優化等方法。
4.傳熱理論研究進展
近年來,傳熱研究者一直都致力于滴狀冷凝在工業生產上的應用,但至今仍未能很好的實現,主要問題是如何獲得實現滴狀冷凝,并且使其冷凝表面壽命延長。改變冷凝界面的性質,將滴狀冷凝應用到工業上進行傳熱改造是傳播熱學研究的主要熱點之一。沸騰的傳熱方式不僅在機械、動力和石油化工等傳統的工業之中廣泛使用,而且在航空航天技術等高科技領域也廣泛的應用著。長期以來,人們都在對液體發生核態沸騰的原因和具有高換熱強度的機理進行著深入的探究。由于沸騰的現象是復雜和多變的,這些都導致了我們不能利用常規的計算方法來計算出沸騰所能傳輸的熱量。到現在為止,加熱器表面受到水沸騰時產生的氣泡的影響,這一問題是最需要得到解決的,也是研究的重點所在,對沸騰傳熱進行計算大都采用機理模型,這種方法存在嚴重的缺陷就是計算的準確率很低,而且需要大量的實驗做基礎,所以目前應用的范圍較窄,目前沒有能較準確計算沸騰傳熱的計算式,因此我們有另辟蹊徑,從新的角度來探究和研究問題,從基本理論出發,提出新的理論與計算方法或研究出新的模型,將數學與之相結合計算出沸騰所傳出的熱量,這將成為今后研究的重中之重。
5.與計算機技術相結合
計算機技術的進步使化學中大量的計算問題和數據采集分析的問題得到了解決,同時解決了人力物力和財力,也增加了數據的準確度與精確度,主要表現在計算機技術對計算流體力學和數值傳熱學上的主要貢獻,其主要的研究方法是數值模擬法。這種方法的特點是需要大量的數據計算,而且需要大量的實驗作為補充,采用計算機進行分析和計算,有利于將數據直觀的表現出來,方式更加靈活多變,費用更加低廉,并且得出結論的周期比較短,對于應對此類問題計算機技術是最好的選擇。
二、化學工程學科未來的發展動態
1.將化工過程與系統過程研究相結合
化學變化是一個復雜的過程,這是因為性質決定的,其非對稱性和不平衡性打破了人們的慣性思維,使其控制因素增多,結構尺度變多,其中結構是對過程工程研究的中心問題,主要解決辦法是簡化其結構,使復雜的結構變得簡單,更具有使用價值;首先研究特殊系統,然后推理出一般性的結論,進而推而廣之,這些都為解決結構問題打下了良好的基礎,解決了復雜系統不容易被分析的問題,采用整體法和還原法研究復雜的系統有利于把握系統的主要變換方向,多尺度的思考問題的方式可以將過程問題轉換成平時的時間和空間問題,對研究化學工程的復雜結構有好處。化學工程的這一轉變趨勢預示著化學正在向著應用領域進行擴張,更加注重其實用性和價值性,而非學科本身理論的研究。這也在化學課堂上出現了明顯的改革,從只有實驗和理論兩個過程的化學轉換成有實驗、有計算最后才產生結論的過程,這就需要化學與數學物理等相結合,甚至與計算機技術相結合,進而實現化學過程的更好研究。
2.將化學工程與材料科學研究相結合
科學的進步使大量新的技術和產品能源不斷涌現,并且在先進技術的引導下得到了廣泛的應用,這就為化學工程的研究提出了新的問題那就是如何為新的產業的形成和發展提供良好的服務并不斷形成新的完整的理論,化學工程的發展就此進入老人一個新的發展階段。在學科研究的方法上更多的注重學科的交叉,更多的研究材料其中包括信息和化學、生物與化學、能源與化學、環境與化學相結合的工程學科,這些都為化學工程的發展提出了新的發展方向和研究課題,為化學的發展做了良好的鋪墊。
3.將化學工程與信息工程研究相結合
傳熱過程的一些新的研究進展和方向
1微細尺度傳熱學研究進展
微細尺度是從空間尺度和時間尺度微細的探討和研究傳熱學規律,現在在傳熱學中已經自成一個分支,發展前景廣闊.當物體的特征尺寸遠大于載體粒子的平均尺寸即連續介質時假定依然會成立,但是由于尺度的微細,原來的假設的影響因素也會相對的發生變化,這就導致了流動和傳入規律發生著惟妙惟肖的變化.目前,微米、納米科學已經取得長足的進步,受到人們的廣泛關注,諸多領域都是圍繞微細尺度傳熱學進行研究的.其中高集成度電子設備、微型熱管、多空介質流動傳熱等多項研究都是微熱尺度傳熱學研究取得的豐碩成果.
2傳熱設備研究進展
通過近十年的研究,利用翅片可以達到促進和增強傳熱的效果
3強化傳熱過程的研究進展
這項研究主要是從改進換熱器設備的形式入手,提高傳熱的效率,并想辦法改進設備使其持續對外放熱,這種改進包括發明新的傳熱材料和改進生產工藝,將過去的設計進行優化等方法.
4傳熱理論研究進展
近年來,傳熱研究者一直都致力于滴狀冷凝在工業生產上的應用,但至今仍未能很好的實現,主要問題是如何獲得實現滴狀冷凝,并且使其冷凝表面壽命延長.改變冷凝界面的性質,將滴狀冷凝應用到工業上進行傳熱改造是傳播熱學研究的主要熱點之一.沸騰的傳熱方式不僅在機械、動力和石油化工等傳統的工業之中廣泛使用,而且在航空航天技術等高科技領域也廣泛的應用著.長期以來,人們都在對液體發生核態沸騰的原因和具有高換熱強度的機理進行著深入的探究.由于沸騰的現象是復雜和多變的,這些都導致了我們不能利用常規的計算方法來計算出沸騰所能傳輸的熱量.到現在為止,加熱器表面受到水沸騰時產生的氣泡的影響,這一問題是最需要得到解決的,也是研究的重點所在,對沸騰傳熱進行計算大都采用機理模型,這種方法存在嚴重的缺陷就是計算的準確率很低,而且需要大量的實驗做基礎,所以目前應用的范圍較窄,目前沒有能較準確計算沸騰傳熱的計算式,因此我們有另辟蹊徑,從新的角度來探究和研究問題,從基本理論出發,提出新的理論與計算方法或研究出新的模型,將數學與之相結合計算出沸騰所傳出的熱量,這將成為今后研究的重中之重.
5與計算機技術相結合
計算機技術的進步使化學中大量的計算問題和數據采集分析的問題得到了解決,同時解決了人力物力和財力,也增加了數據的準確度與精確度,主要表現在計算機技術對計算流體力學和數值傳熱學上的主要貢獻,其主要的研究方法是數值模擬法.這種方法的特點是需要大量的數據計算,而且需要大量的實驗作為補充,采用計算機進行分析和計算,有利于將數據直觀的表現出來,方式更加靈活多變,費用更加低廉,并且得出結論的周期比較短,對于應對此類問題計算機技術是最好的選擇.
化學工程學科未來的發展動態
1將化工過程與系統過程研究相結合
化學變化是一個復雜的過程,這是因為性質決定的,其非對稱性和不平衡性打破了人們的慣性思維,使其控制因素增多,結構尺度變多,其中結構是對過程工程研究的中心問題,主要解決辦法是簡化其結構,使復雜的結構變得簡單,更具有使用價值;首先研究特殊系統,然后推理出一般性的結論,進而推而廣之,這些都為解決結構問題打下了良好的基礎,解決了復雜系統不容易被分析的問題,采用整體法和還原法研究復雜的系統有利于把握系統的主要變換方向,多尺度的思考問題的方式可以將過程問題轉換成平時的時間和空間問題,對研究化學工程的復雜結構有好處.化學工程的這一轉變趨勢預示著化學正在向著應用領域進行擴張,更加注重其實用性和價值性,而非學科本身理論的研究.這也在化學課堂上出現了明顯的改革,從只有實驗和理論兩個過程的化學轉換成有實驗、有計算最后才產生結論的過程,這就需要化學與數學物理等相結合,甚至與計算機技術相結合,進而實現化學過程的更好研究.
2將化學工程與材料科學研究相結合
科學的進步使大量新的技術和產品能源不斷涌現,并且在先進技術的引導下得到了廣泛的應用,這就為化學工程的研究提出了新的問題那就是如何為新的產業的形成和發展提供良好的服務并不斷形成新的完整的理論,化學工程的發展就此進入老人一個新的發展階段.在學科研究的方法上更多的注重學科的交叉,更多的研究材料其中包括信息和化學、生物與化學、能源與化學、環境與化學相結合的工程學科,這些都為化學工程的發展提出了新的發展方向和研究課題,為化學的發展做了良好的鋪墊.
3將化學工程與信息工程研究相結合
2綠色化學反應技術的應用
綠色化學指用化學的技術和方法,再結合其他學科的知識來減少或者消除化學對于人類的危害、社會的危害以及環境的危害。從源頭的原材料開始,到生產過程中的試劑和介質還有催化劑,到最后的產物及副產物都要求綠色、環保、無毒害,還有就是“原子經濟性”的“零排放”。像在綠色無毒原料控制方面,石油化工原料就可以改變成生物原料的。制作尼龍可以不用含苯的石油化工原料,改成生物原料,生物原料的淀粉及纖維素等在酶催化反映下也能形成己二酸,這樣一樣可以制作尼龍,而且對人體和環境都危害極小。再比如在反應過程中對介質、溶劑等的控制,也要求無毒無害,在有機反應中水就是很好的溶劑,不僅對環境無害還能節省到有機反應中的官能團的保護還有去保護等環節,所以也省工藝省時間了。還有反應中用的綠色催化劑,綠色催化劑能更加正對性,更加高效地參與化學反應,并且得到的副產物少。在有機合成反應中,綠色催化劑的應用顯得尤為重要。像不對稱合成反應中,催化劑不僅為化學農藥和精細化工提供反應需要的中間體,有的還能為反應提供綠色的合成技術。比如酶催化反應、氫酯化反應、還有不對稱酮反應等。
3化學工程中的傳熱研究
化學反應中傳熱的研究是化學工程的重要內容,因為它嚴重影響著一個反應的能耗,反應的進程等。在微細尺度傳熱研究中,由于尺度微細,原有的傳熱假設及會發生變化,其流動還有傳入的規律也會發生變化。目前在納米、微米、集成電子設備還有微型熱管領域中該傳熱研究交深入,取得了較不錯的成果。而我們在改進傳熱工藝和設備上也做足了研究,為了提高傳熱效率,我們可以改進設備的性能,使其持續對外傳熱的能力提高,改變里面的傳熱材料和工藝的設計來實現傳熱的效率。然而我們現在投入很多精力的滴狀冷凝技術的研究還沒能取得很好的成果。由于我們不能在維持物質在滴狀的時候冷凝,同時冷凝表面壽命延長,所以目前這個難題還很難突破。還有就是我們在計算沸騰時的傳熱存在很多弊端,復雜的沸騰狀態不適用目前所有的傳熱計算方式,就研究沸騰傳熱的計算方法也是一大塊難題的,所以就滴狀傳熱技術的研究也將會是我們傳熱研究領域的一個重要課題,如果該研究獲得進展必將改變現在很多的化學生產工藝形式,將會帶領化學生產進入一個新的時代。
微化工技術的應用,實現了反應時間的大幅度縮短,從幾小時甚至幾十小時縮短至幾十秒,乃至幾秒,而且反應容器的體積也得以縮小成為以升或毫升為單位的容器。微化工技術自形成以來,到如今僅僅經過了20多年的發展階段,已經憑借其特有的魅力讓我們對化工生產的前景充滿了希望。如利用可直接放大而且具有較高安全性,能夠比較容易控制反應過程的技術,改變化學工業污染重、能耗高的傳統發展模式,實現綠色化工生產,提高化工生產的資源與能源利用的效率。化工過程中進行的化學反應往往會受到來自于本文由收集整理傳遞速率或本征反應動力學的控制或者處于兩者的共同控制下。
2 微化工系統的特點及優越性
2.1 有利于化學反應的精確控制
微反應技術的實現原理是對微管道中的連續流動反應的運用,從而準確控制物料在反應條件下的停留時間,而且這一方法的運用,明顯減少了反應物的所需用量,因此反應時間大幅度縮短,而且顯著提高了精度,從而能夠將因在過程的反應時間內所產生的副產品清除掉。檢測時間因微組合化學合成與分析系統的應用,將原來的2-3個小時縮短至不足一分鐘,而精度卻提高到仄摩爾(10-21mol)。
2.2 安全可靠
特征尺寸與火焰傳播臨界直徑相比,相對要小一些,而且微通道具有很強的傳熱能力,從而為鏈式反應的順利進行提供了條件。同時,也有效地抑制自由基爆炸反應。由于微化工系統的換熱效率極高,再加上系統內存有能夠滯留的物料,即使發生了自由基爆炸的情況,所造成的后果也屬于可控范圍內,從而促使在過去于常規設備內完成的具有較大危險的化學反應而不敢或不能進行的試驗,得以實現。
2.3 小試工藝不需中試可以直接放大
將微反應技術應用于生產時,工藝放大的實現可以運用增加微通道數量的方式,而不能選擇增加微通道特征尺寸。這樣就有效減少了中間的試驗放大階段,提高了效率。由此可以看出小試工藝的突出優勢在于最佳反應條件可以直接進入生產而不需要提前對其作出任何改變,有效解決了過去需要將常規反應器放大的難題。
3 微反應器的研究與應用
3.1 微反應器的設計
微反應器作為一個微系統,其復雜性可見一斑,而且設計當中覆蓋了多個領域的知識,對知識的綜合運用提出了較高的要求。由此可以看出,微反應器的各部件與微通道的制作都必須以精密的設計與研究作為基礎和前提。微通道對于熱交換和傳遞都有著重大的影響,因此存在著復雜的關系。微通道的直徑數量級單位為微米,所以流體所在的容器為微米量級寬度的管道,一般情況下雷諾準數在幾十到幾百之間,粘滯力比慣性力大,流體為層流狀態。
3.2 微反應器適合的類型
根據相關研究表明,微反應器只能運用于30%的精細化領域的有機反應當中,實現收率、選擇性以及安全性等方面的提高。由此可以判斷出,微反應并不是能夠應用于所有類型的化學反應,其所具有的優勢可以在以下化學反應中得以體現。
3.2.1 放熱劇烈的反應。對于這類反應,運用常規反應器時,進料方式會選擇逐漸滴加。而即使采用逐漸滴加,也仍然會出現局部瞬間過熱的現象,產生一定量的副產物。而微反應器的應用,則能夠及時將熱量導出,從而精確控制反應溫度。
3.2.2 反應物或產物不穩定的反應。某些反應物或生成物具有很強的不穩定性,即使在反應器中做短暫的停留,也會分解而降低收率。而微反應器的原理是連續流動,從而對反應物的停留時間加以精確控制,從而防止出現類似于常規反應器中的由于反應物或生成物不穩定而分解的情況。
3.3 微反應器技術的應用