日日夜夜撸啊撸,欧美韩国日本,日本人配种xxxx视频,在线免播放器高清观看

技術分析論文大全11篇

時間:2023-03-01 16:25:25

緒論:寫作既是個人情感的抒發,也是對學術真理的探索,歡迎閱讀由發表云整理的11篇技術分析論文范文,希望它們能為您的寫作提供參考和啟發。

技術分析論文

篇(1)

1.2浸種:用縮節胺200mg/L浸種12小時,幼苗側根數量增加30%以上,地上部分生長放慢,節間適中(3.4-4.5)cm,出葉速度并不降低,初始果枝平均下降一個節間。苗期一般不需要化控。如雨水多則可視情況輕控。

2蕾期調控

2.1中耕:可以有效提高地溫,促進棉苗根系發育。中耕深度先淺后深,做到碎土良好,達到增溫保墑的目的。

2.2葉面施肥:補充棉花苗期生長所需的微量元素,硼、鋅及少量的氮、磷肥。

2.3受災棉苗、僵苗一促為主,采取中耕、噴施赤霉素、葉面肥,對發生干旱的面田要提前灌水施肥促苗早發。

2.4噴施縮節胺,增加葉片葉綠素含量,促進花芽分化,控制基部節間伸長,主莖日生長量控制在0.7-0.9cm之間為宜,根據品種、土壤肥力、長勢長相、天氣狀況適當調整化控濃度和次數。

3花期調控

3.1此時期是棉花營養生長和生殖生長旺盛期,又是水肥供應充足期。在灌水前3-4天必需對棉田進行縮節胺化控,用量在3-5g/667㎡.施用縮節胺次數、時間、用量應結合氣候水情、品種、土壤肥力、長勢長相靈活掌握。再用藥量上掌握前輕后重的原則。為防早衰進行二次追肥,施尿素8-10kg/667m2。

3.2打頂整枝:通過擇除頂心,去掉頂端優勢,抑制營養生長,促進生殖生長,使養分有效的運輸到生殖器官,防止早衰,保證秋桃成鈴。

3.3打群尖:抑制葉枝和果枝生長,改善群體通風透光條件,保證蕾鈴正常發育。

3.4去葉枝、推株并壟:改善田間通風透光條件,促進底部棉鈴的發育。

4吐絮期調控

篇(2)

近年來,我縣飲用種植發展迅猛,為廣大菊農帶來非常不錯的經濟效益。但隨著面積的不斷擴大及種植年數的增加,種植過程中也出現了不少問題,現將的種植技術介紹如下。

1的習性

喜溫暖和陽光充足的環境,能耐寒,怕水澇,但苗期、花期不能缺水,屬短日照植物,對日照長短反應很敏感,每天不超過10h的光照,才能現蕾開花。

2栽培技術

2.1選地整地

種植對土壤要求不嚴,但應選擇排水良好、肥沃、疏松、含腐殖質豐富的土壤為好。粘地、低洼地、鹽堿地不宜種植,切忌連作。

2.2繁殖方法

2.2.1分株定植。在11月收摘后,將莖齊地面割除,選擇生長健壯、無病害植株,將其根全部挖出,重新栽植在一塊肥沃的地塊上,施一層土雜肥,保暖越冬。翌年3~4月扒開糞土,澆水,4~5月份幼苗長至15cm高時,將全株挖出,分成數株,立即栽植于大田,栽時株行距為40cm×40cm,挖穴,每穴栽苗1~2株,栽后蓋土壓實,澆定根水,一般1hm2老苗可栽15hm2左右的生產田。

2.2.2扦插育苗。在4~5月份或6~8月份,選擇粗壯、無病害的新枝作插條。取其中段,剪成10~15cm的小段,用植物激素處理插條,然后將插條插入苗床,行距20~25cm,株距6~7cm,壓實澆水,約20d即可發根,每隔1個月后追施1次人畜糞水,苗高20cm時可出圃移栽。

2.3移栽

分株苗于4~5月、扦插苗于5~6月移栽。選陰天或雨后或晴天的傍晚進行。在整好的畦面上,按行株距各40cm挖穴,穴深6cm,然后帶土挖取幼苗,扦插苗每穴栽1株,分株苗每穴栽1~2株。栽后覆土壓緊,澆定根水。

2.4田間管理

2.4.1中耕除草。菊苗移栽成活后,到現蕾前要進行4~5次除草。每次除草宜淺不宜深,同時要進行培土,防止菊苗倒伏。

2.4.2追肥。喜肥,除施足基肥外,生長期還應進行3次追肥。第一次在移栽返青后,施尿素150~225kg/hm2催苗;第二次在植株分株時,可施餅肥、人糞尿;第三次施肥在現蕾期。

2.4.3摘蕾。分枝后,在小滿前后,當苗高25cm時,進行第一次摘心,選晴天摘去頂心1~2cm,以后每隔15d摘心1次,在大暑后停止,否則分枝過多,營養不良,花頭變得細小,反而影響的產量和質量。

3病蟲害防治

3.1主要病害防治

危害的病害很多,其中主要病害癥狀表現為:①白粉病。此病為害葉片、葉柄及嫩梢。病部像撒了一層白粉即分生孢子和菌絲;病葉常扭曲變形,病重植株花蕾不能正常開放、生長停止,甚至整株枯死。②褐斑病。主要為害葉片,圓形或橢圓形病斑,紫褐色變成黑褐色,嚴重時多個病斑連接遍及全葉。病葉枯死發黑,但不脫落。病株從下部葉片開始順次向上枯死至全株。③菌核性腐爛病。主要為害莖部。一般先在土表莖基部發生,病斑軟腐,潮濕時出現白色菌絲。病斑繞莖一周時,葉片黃化下垂、枯萎,最后整株立枯,病莖中有鼠糞狀菌核。

防治措施:①秋后徹底清除枯枝落葉,及時清除病株病葉,并集中燒毀。②加強土、肥水管理和打頂修剪等工作,注意選用壯苗,合理密植,不宜過密,保持菊園良好的通風透光條件。③4~10月發病期間,輪換選用化學藥劑防治,如1∶1∶200倍波爾多液、20%粉銹靈3000倍液、70%乙磷鉛錳鋅500倍液、58%甲霜靈錳鋅1000倍液、70%可殺得1000倍液、40%菌核凈1000倍液,以及百菌清、克菌靈、滅病威、代森錳鋅、甲基托布津等,根據病情確定噴藥次數。

3.2主要蟲害防治

篇(3)

(1)保護作用。由于汽車特殊的生存環境:風吹日曬、雨淋石擊,要求汽車有一定的防腐性能和使用壽命。(2)它的涂飾作用由于汽車不停地穿梭在公路、在城鄉,人們希望它能給生活帶來色彩斑瀾,希望汽車美觀舒適、色澤誘人。為此汽車涂裝就要進行現代化大規模集約化生產,就需要投入大量人力物力建造并管理好現代化大規模涂裝生產線。

1.2汽車涂裝常用涂料

(1)按涂裝對象的不同,汽車漆可分為:①新車原裝涂料;②汽車修補漆(2)按在汽車上的涂層由下至上分類:;①汽車用底漆,多為電泳漆;②汽車用中間層涂料;③汽車用底色漆(包括實色底漆和金屬閃光底漆);④汽車用面漆,一般指實色面漆,不需要罩光;⑤汽車用罩光清漆;⑥汽車修補漆;(3)按涂裝方式分類:①汽車用電泳漆;②汽車用液體噴漆;③汽車用粉末涂料;④汽車用特種涂料如PVC密封涂料;⑤涂裝后處理材料(防銹蠟、保護蠟等);(4)按在汽車上的使用部位分類:①汽車車身用涂料;②貨廂用涂料;③車輪、車架等部件用的耐腐蝕涂料;④發動機部件用涂料;⑤底盤用涂料;⑥車內裝飾用涂料。

1.3汽車涂裝油漆噴涂的基本原則

(1)噴漆前先檢查工具與工作環境。空氣壓縮機內的水份、油質必先釋出。徹底清潔、檢查噴漆房、通風濾網。清潔噴漆房地面。

(2)表面干凈。施噴表面一定要用水洗干凈,有油質,蠟質要用出有劑出油,新焊接或除鐵銹后的金屬表面要用——環氧樹脂防銹底漆處理以防生銹。

(3)正確的砂磨方法。使用砂紙不要太用力,盡可能用細一點的砂紙。

(4)用高品質稀釋劑。對稀釋劑不要打經濟算盤,使用配套的稀釋劑,油漆可發揮最高質量,使用廉價的稀釋劑可節省數元,但將付出更多時間與精力;使用高品質稀釋劑,工作將會更順手。

(5)硬化劑及稀釋劑。要正確硬化劑及稀釋劑比例,不正確將影響漆的效果。

2汽車油漆標準工藝流程

(1)車體作防銹及內部噴涂:視車身情況由鈑金工完成。(2)打磨及修飾斜邊:使用P60~180#砂紙打磨車身上經過鈑金修補及需要原子灰的地方。(3)除塵、清潔:使用壓力槍及除硅清潔劑清除車身上的微塵及污漬。(4)貼護:使用反貼技巧貼上遮蔽紙。(5)涂裝底漆:混合4:1紅底漆及施噴1~2層打磨后露出金屬的位置上,然后烤干。(6)填補原子灰:混合多功能原子灰填補于車身上凹陷位置,置于攝氏20度環境30分鐘。(7)打磨原子灰:使用P60~240#砂紙打磨,用手感或打磨指示層檢查平整度,針孔和印痕。(8)特幼原子灰:有需要時選用,填補針孔、砂紙痕等。(9)打磨:使用P280#砂紙徹底打磨車身上需噴涂中間漆的舊漆。(10)除塵、清潔:使用壓力槍及除硅清潔劑清除車身上的灰塵及污漬。(11)貼護:貼上遮蔽紙。(12)噴涂中間漆:混合多功能中間漆2~3層,每層隔5~10分鐘,然后烤干攝氏60度30分鐘,再噴上打磨指示層。(13)打磨中間漆:使用P320~400#砂紙打磨干燥后的中間漆。(14)檢查:檢查打磨效果,可做微填。(15)除塵、清潔:清除車身上的灰塵和污漬。(16)貼護:對車身做貼護遮蔽。(17)除塵、清潔:先用壓力槍吹出車身上的塵點,用除硅清潔劑清除車身污漬,用壓力槍吹出車身縫隙的灰塵,最后以粘塵布粘除車身上的微塵。(18)面漆噴涂素色漆:噴涂2~3層,每層相隔5~10分鐘,配合溫度添加固化劑和稀釋劑。(19)噴涂底色漆:噴涂2~3層素色漆、銀粉漆或珍珠漆,每層間隔5~10分鐘。(20)清漆噴涂:混合及施噴兩層清漆,每層間隔5~10分鐘,配合溫度添加固化劑和稀釋劑。(21)烤干:靜置5~10分鐘,攝氏60度干燥30分鐘。(22)打蠟拋光。(23)遮蓋汽車。遮蓋汽車的目的是防止噴霧噴到不該噴到的地方,常規的基本遮蓋材料是遮蓋紙和遮蓋帶。汽車遮蓋紙的寬度從7cm~91cm不等,是耐熱的,一般可在烘房內安全使用,其濕強度好,可防止溶劑滲透(注意:不能用報紙遮蓋,報紙耐熱性不強,且含有印刷油墨,油墨會溶于油漆溶劑中,滲入下面的面漆,造成污染)。

3汽車涂裝過程中注意事項

(1)漆前修補。對于車身部件上存在的諸如局部銹蝕、輕度硬損傷等缺陷,如果一概挖補、敲而有些得不償失。若不加修補而直接以膩子填充,其強度和耐腐蝕性能均較差。漆前修補旨在卓有成效的彌補這類缺陷。常用的修補方法有:軟金屬填補,軟金屬填補(俗稱掛錫)修補部件表面缺陷,具有附著力好、工藝簡單和抗沖擊能力強等優點。鋁箔樹脂板填補,鋁箔上預涂合成樹脂中有含一定比例的金屬粉以提高其強度,具有方便、快捷的特點。

(2)砂紙打磨。手工打磨平面應將砂紙墊在手模板上進行,對較大面積的修磨則應換成大一些的打磨板,這樣不僅修磨省力而且砂磨的打磨質量也好。打磨較窄的棱角部位時,宜用較小的打磨塊,打磨型線或圓弧時,則應用與其形狀相似的仿形打磨塊。在沒有打磨塊只用砂紙的情況下,一般漆工是將砂紙夾在拇指和手掌之間手平放在表面。手工打磨動作應均勻,并不得為急于求成而用力過猛,手工打磨時的運作方向也應交替進行。否則,容易磨出凹陷,以致前功盡棄。

(3)第二次除油。汽車車身表面雖然經過清洗、除漆、除銹、修補等工序,但鈑金修復后留存的污垢,工具上的油污以及原舊漆未去除部分的油污若在涂底漆前不清除干凈,必將影響的氣的附著力,甚至在面漆噴涂后,還會出現脫落或桔皮現象。因此,上漆前尚需要除油。最好使用除蠟清潔劑,用潔凈的干布擦拭待噴漆表面即可。

4汽車清洗中應注意的問題

(1)應使用專用洗車液,嚴禁使用肥皂或洗潔精,因為這類用品堿性強,會導致漆面失光,局部產生色差,密封橡膠老化,還會加速局部漆面脫落部位的金屬腐蝕。(2)高壓沖洗前,須檢查車窗,前后蓋板是否關閉良好。(3)高壓沖洗時,水壓不宜太高,一般不高于7Mpa。且先使用分散霧狀水流清洗全車,浸潤后再利用集中水流沖洗。對于可調壓的清洗機,底盤沖洗時,水壓可高一些,以便能夠沖掉底盤上附著的污泥和其他附著特。車身清洗時,可將水壓調低些,如果清洗車身的水壓和水流過大,污物顆粒會劃傷漆層。(4)使用調溫式清洗機,注意熱水溫度不宜過高,以免損壞漆層。(5)擦清洗劑時應使用軟毛巾或海綿,最好使用海綿以免其中裹有硬質顆粒劃傷漆面。(6)洗車各工序都應遵循由上到下的原則,即由車頂、前后蓋板、車身側面、燈具、保險杠、車裙、車輪等。(7)不要在陽光直射下洗車。如果陽光直射,車表水分蒸發快,干涸的車身上的水滴會留下斑點,影響清洗效果。(8)不要在嚴寒中洗車,以防水滴在車身上結冰,造成漆層破裂,北方嚴寒季節洗車應在室內進行,車輛進入工位后,停留5-10min,然后沖冼。(9)發現車身附有灰塵或雜質,應及時清除,以免玷污漆面。

5注重日常養護

篇(4)

1電動機起動的現狀

三相鼠籠型異步電動機因其具有結構簡單、運行可靠、維修方便、慣性小、價格便宜等諸多優點,在農田排灌中作為電能轉化為機械能的主要動力設備而被廣泛采用。但由于其起動電流大,對電網的影響和對工作機械(如水泵、拍門等)的沖擊力都很大,因而在起動過程中必須采取一些技術措施對起動電流和沖擊力(起動電磁轉矩)加以合理而有效的控制,實現比較穩定的起動,從而改善系統設備工況,有效延長系統壽命,減少故障率的發生。

異步電動機的起動問題,一直為業內人士所關注。異步電動機的起動方式從原理上講只有兩種:直接起動和降壓起動。直接起動,就是將處于靜止狀態的電動機直接加上額定電壓,使電動機在額定電壓作用下直接完成起動過程。直接起動轉矩大,起動時間短,起動控制方式簡單,設備投資少,因此在中小型電動機的起動上得到廣泛的采用。但直接起動方式也受到許多限制,主要表現在下列三個方面:

(1)起動電流可大到電動機額定電流的4~7倍,部分國產電動機的起動電流實際測量甚至高達8~12倍。如果直接起動較大的電動機,過大的起動電流將造成電網電壓顯著下降,影響同一電網其它電氣設備和電子設備的正常運行,嚴重時將使部分設備因電壓過低而退出運行,甚至使電力線路繼電保護裝置過流保護動作而跳閘,使線路供電中斷。

(2)直接起動會使被拖動的工作機械受到機械性沖擊,對于水泵性負載來說,過高的起動轉矩對葉片、軸承、拍門等造成軟性損傷(機械變形、疲勞性老化)及硬性損傷(裂紋、斷裂等)是較為常見的,甚至會因水流對管道的沖擊力(及反作用力)過大而產生嚴重的水錘效應損壞設備。

(3)直接起動要求供電變壓器容量較大,而對農田排灌泵站供電的變壓器容量往往達不到直接起動對電網容量的要求。

在不允許直接起動的情況下,就要采用降壓起動的起動方式,即降低電動機端電壓進行起動。降壓起動一般有星/三角起動,定子電路中串接電阻、電抗器起動,自耦變壓器降壓起動及本文推薦的軟起動等方法。

星形/三角形起動器是降壓起動器中結構最簡單、成本最低的一種,然而它的性能受到限制,主要表現在:

(1)無法控制電流和轉矩下降程度,這些值是固定的,為額定值的1/3。

(2)當起動器從星形接法切換到三角形接法時,通常會出現較大的電流和轉矩變動。這將引起機械和電氣應力,導致經常性故障的發生。

自耦變壓器式起動器比星形/三角形起動器提供了更多的控制手段,可以通過變壓器抽頭改變I段起動電壓(典型為65%和80%兩擋起動分接頭)。然而它的電壓是分級升高的,所以其性能受如下限制:

(1)電壓的階躍性變化(分級轉換時產生)引起較大的電流和轉矩變動,同星形/三角形起動器性能限制“2”一樣會導致機械、電氣經常性故障的發生。

(2)有限的輸出電壓種類(起動電壓分接頭數量有限),限制了理想起動電流的選擇。因為自耦變壓器式起動器控制是使用較額定電壓低的電壓級別進行降壓起動,它控制的電機參數為電壓而非電流,所以當電網電壓波動及負載變化(如排灌站水位落差變化)時,起動電流曲線將顯著偏離設計理想曲線,從而惡化起動性能,設備在較差的工況下將大大縮短使用壽命,增加維護成本。

電阻式起動器也能提供比星形/三角形起動器更好的起動控制。然而它同樣有一些性能、使用上的限制,包括:

(1)起動特性很難優化。原因是制造起動器時電阻值是確定的,在使用中很難改變,雖然可以通過轉換分接頭來進行分級起動,但當級數較多時,勢必增加控制系統的復雜性,而制造成本、故障率也將隨之大幅度提高,所以一般電阻式起動器均在2~5級間。這樣,加在電動機定子繞組上的電壓、電流等主要電量參數在分級起動時仍有很大的波動。

(2)頻繁起動場合下的起動特性不好。原因是在起動過程中電阻值會隨著電阻的溫度變化,在停止到再起動過程中需經長時間冷卻過程。

(3)負載較大或起動時間較長的場合下的運行特性變壞,原因是電阻值隨著電阻器溫度的變化而變化。

(4)在負載大小經常變化的應用場合(如排灌站水位落差變化較大),電阻式起動器不能提供理想的起動效果。

綜上所述,傳統的降壓起動設備均有諸多性能限制和使用限制,越來越難以適應不斷發展的電動機復雜使用場合的起動需要。

2軟起動技術的工作原理

軟起動技術是在晶閘管斬波技術的基礎上發展起來的,利用晶閘管斬波技術進行工頻電壓調節

在50Hz正弦波每個半周內固定時間(過零延時t1)給晶閘管VT1門極以一個觸發脈沖,則根據晶閘管特性,在觸發脈沖結束后,晶閘管將在半周內剩余時間維持導通(見圖1(b)中陰影部分),直至電壓再次過零,這樣只要調節VT1觸發脈沖出現的時間,則輸出電壓u0將會在0~100%輸入電壓(ui)內得到調節。如果將晶閘管斬波調壓技術應用于三相電源,再加入現代電子技術如單片機控制技術等即可制成軟起動器,從而在大型三相鼠籠式交流異步電動機的起動上得以應用。

軟起動電動機時的電壓、電流特性曲線見圖2。從電壓特性曲線u=f(t)可以看出,從起動開始軟起動器給交流異步電動機一個初始電壓Ust(Ust一般在10%~60%Ue間自由調整)并在用戶設定的起動時間Tst(Tst一般在1~60s范圍內自由設定)內將負載電壓均勻上升到電動機額定電壓Ue。由于軟起動器自身特有的限流功能,起動電流在起動期間始終不超過起動限制電流ILIM(ILIM一般在2~5Ie內自由設定)。

為了比較起動外特性,在此給出了應用中最常見的傳統起動方式———自耦變壓器降壓起動時的電壓、電流特性曲線(見圖3)。從圖3可以看出,兩級起動的兩個階段均產生很大的起動沖擊電流,對電網形成沖擊,而兩個較大的級落電壓0Ust與UstUe又會發生非常大的轉矩突變,產生機械沖擊。而電動機軟起動時無論在電流曲線還是電壓曲線上看,均已將電沖擊及機械性沖擊減小到最低的程度。

3軟起動技術的應用

用軟起動器組成軟起動控制系統可以采取兩種型式:(1)在線式控制軟起動系統和旁路切換式軟起動系統(見圖4、圖5)。圖中K0、K1~Kn為空氣斷路器;RQ、RQ1~RQn為軟起動器;KM11~KMn1、KM12~KMn2為交流接觸器;M1~Mn為電動機。

篇(5)

一、數字IC設計方法學

在目前CI設計中,基于時序驅動的數字CI設計方法、基于正復用的數字CI設計方法、基于集成平臺進行系統級數字CI設計方法是當今數字CI設計比較流行的3種主要設計方法,其中基于正復用的數字CI設計方法是有效提高CI設計的關鍵技術。它能解決當今芯片設計業所面臨的一系列挑戰:縮短設計周期,提供性能更好、速度更快、成本更加低廉的數字IC芯片。

基于時序驅動的設計方法,無論是HDL描述還是原理圖設計,特征都在于以時序優化為目標的著眼于門級電路結構設計,用全新的電路來實現系統功能;這種方法主要適用于完成小規模ASIC的設計。對于規模較大的系統級電路,即使團隊合作,要想始終從門級結構去實現優化設計,也很難保證設計周期短、上市時間快的要求。

基于PI復用的數字CI設計方法,可以滿足芯片規模要求越來越大,設計周期要求越來越短的要求,其特征是CI設計中的正功能模塊的復用和組合。采用這種方法設計數字CI,數字CI包含了各種正模塊的復用,數字CI的開發可分為模塊開發和系統集成配合完成。對正復用技術關注的焦點是,如何進行系統功能的結構劃分,如何定義片上總線進行模塊互連,應該選擇那些功能模塊,在定義各個功能模塊時如何考慮盡可能多地利用現有正資源而不是重新開發,在功能模塊設計時考慮怎樣定義才能有利于以后的正復用,如何進行系統驗證等。

基于PI復用的數字CI的設計方法,其主要特征是模塊的功能組裝,其技術關鍵在于如下三個方面:一是開發可復用的正軟核、硬核;二是怎樣做好IP復用,進行功能組裝,以滿足目標CI的需要;三是怎樣驗證完成功能組裝的數字CI是否滿足規格定義的功能和時序。

二、典型的數字IC開發流程

典型的數字CI開發流程主要步驟包含如下24方面的內容:

(1)確定IC規格并做好總體方案設計。

(2)RTL代碼編寫及準備etshtnehc代碼。

(3)對于包含存儲單元的設計,在RTL代碼編寫中插入BIST(內建自我測試)電路。

(4)功能仿真以驗證設計的功能正確。

(5)完成設計綜合,生成門級網表。

(6)完成DFT(可測試設計)設計。

(7)在綜合工具下完成模塊級的靜態時序分析及處理。

(8)形式驗證。對比綜合網表實現的功能與TRL級描述是否一致。

(9)對整個設計進行Pre一layout靜態時序分析。

(10)把綜合時的時間約束傳遞給版圖工具。

(11)采樣時序驅動的策略進行初始化nooprlna。內容包括單元分布,生成時鐘樹

(12)把時鐘樹送給綜合工具并插入到初始綜合網表。

(13)形式驗證。對比插入時鐘樹綜合網表實現的功能與初始綜合網表是否一致。

(14)在步驟(11)準布線后提取估計的延遲信息。

(15)把步驟(14)提取出來的延遲信息反標給綜合工具和靜態時序分析工具。

(16)靜態時序分析。利用準布線后提取出來的估計延時信息。

(17)在綜合工具中實現現場時序優化(可選項)。

(18)完成詳細的布線工作。

(19)從完成了詳細布線的設計中提取詳細的延時信息。

(20)把步驟(19)提取出來的延時信息反標給綜合工具和靜態時序分析工具。

(21)Post-layout靜態時序分析。

(22)在綜合工具中實現現場時序優化(可選項)。

(23)Post一alyout網表功能仿真(可選項)。

(24)物理驗證后輸出設計版圖數據給芯片加工廠。

對于任何CI產品的開發,最初總是從市場獲得需求的信息或產品的概念,根據這些概念需求,CI工程師再逐步完成CI規格的定義和總體方案的設計。總體方案定義了芯片的功能和模塊劃分,定義了模塊功能和模塊之間的時序等內容。在總體方案經過充分討論或論證后開始CI產品的開發。CI的開發階段包含了設計輸入、功能仿真、綜合、DFT(可測試設計)、形式驗證、靜態時序分析、布局布線等內容。而CI的后端設計包括布局、插入時鐘樹、布線和物理驗證等內容,后端設計一般能在軟件中自動完成,如SIE軟件就能自動完成布局布線。

三、IC開發過程介紹

IC開發過程包括設計輸入、功能仿真、綜合、可測試性設計DFT、形式驗證、靜態時序分析、布局、插入時鐘樹、布線、物理驗證等內容,下面分別進行詳細介紹。

設計輸入:一般包括圖形與文本輸入兩種格式。文本輸入包括采用verilog和vHDL兩種硬件描述語言的格式,verliog語言支持多種不同層次的描述,采用硬件描述語言主要得益于采用綜合器來提高設計效益;圖形輸入一般應該支持多層次邏輯圖輸入,主要應用在一些專門的電路設計中,但是圖形輸入耗時費力且不方便復用。

功能仿真:功能仿真的目的是為了驗證設計功能的正確性和完備性。搭建的測

試環境質量和測試激勵的充分性決定了功能仿真的質量和效益,仿真工具也是比較多,而且功能比較齊全。

綜合:所謂綜合,就是將設計的HDL描述轉化為門級網表的過程。綜合工具(也可稱為編譯器)根據時間約束等條件,完成可綜合的TRL描述到綜合庫單元之間的映射,得到一個門級網表等;綜合工具可內嵌靜態時序分析工具,可以根據綜合約束來完成門級網表的時序優化和面積優化。

可測試性設計DFT:目前大多數CI設計都引入可測試結構設計,一般在電路初步綜合后可進行DFT設計。典型的DFT電路包括存儲單元的內建自測BIST電路、掃描鏈電路和邊界掃描電路。BIST電路是為了測試而設計的專門電路,它可以來自半導體生產廠商,也可以用商用的工具自動產生。掃描鏈電路一般是用可掃描的寄存器代替一般的寄存器,由于帶掃描功能的寄存器的延時與一般的寄存器并不一致,所以在綜合工具進行時序分析時最好就能考慮這種“附加”的延遲。邊界掃描電路主要用來對電路板上的連接進行測試,也可以把內部掃描鏈的結果從邊界掃描電路引入。

形式驗證是一種靜態的驗證手段,它根據電路結構靜態地判斷兩個設計在功能上是否等價,從而判斷一個設計在修改前和修改后其功能是否保持一致。

靜態時序分析:靜態時序分析是CI開發流程中非常重要的一環。通過靜態時序分析,一方面可以了解到關鍵路徑的信息,分析關鍵路徑的時序;另一方面,還可以了解到電路節點的扇出情況和容性負載的大小。

布局:布局被認為是整個后端流程最關鍵的一步,布局首先是在滿足電路時序要求的條件下得到盡可能小的實現面積,其次布局也是把整個設計劃分成多個便于控制的模塊。布局的內容包括把單元或宏模塊擺放到合適的位置,其目的是為了最大限度地減小連線的RC延遲和布線的寄生電容效應,此外,良好的布局還可以減小芯片面積和降低布線時出現擁賽現象的幾率。

插入時鐘樹:時鐘樹又稱時鐘網絡,是指位于時鐘源和它所有扇出的寄存器時鐘輸入端之間的BUFFER驅動邏輯,時鐘樹通常根據物理布局情況生成。時鐘樹的插入關鍵在于如何控制時鐘信號延時和時鐘信號扭曲,因為較大的延遲對解決電路的保持時間問題不利,較大的時鐘扭曲往往增加寄存器鎖存不穩定數據的幾率。但是時鐘信號延遲和時鐘信號扭曲問題是對矛盾,如果設計對兩者都要求比較嚴格的話,時鐘樹的插入往往需要考慮比較多。

布線:布線分為兩個階段完成:預布線和詳細布線,預布線時版圖工具把整個芯片劃分為多個較小的區域,布線器只是估算各個小區域的信號之間最短的連線長度,并以此來計算連線延遲,這個階段并沒有生成真正的版圖連線。詳細布線階段,布線器根據預布線的結果和最新的時序約束條件生成真正的版圖連線。但是如果預布線的時間比布局運行的時間還要長,這就意味著布局的結果是失敗的,這時候就需要重新布局以減少布線的擁賽。

布局布線完成之后,EDA工具根據布局布線的結果產生電路網表,產生真正的互連線延遲數據,這樣以前綜合工具DC根據線負載模型計算出來的延遲數據與這些互連線延遲數據相比是不夠精確的,因此把這些版圖提取出來的互連線延遲數據反標給DC重新進行綜合優化,如果生成的網表滿足了時序、面積及功耗要求后就生成電路版圖,電路版圖經過驗證就可以制成芯片。超級秘書網:

篇(6)

1概述

隨著信息技術的不斷發展和完善,信息的快速傳遞在生產和生活中顯得越來越重要。在各種信息傳遞方式中,語音的互通占據著重要的位置。最為大家熟知的是以PCM編碼方式傳送語音的普通電話業務,實時性強、語音質量高,占據著語音通話業務的主體。但近年來隨著IP電話的普及和網絡技術的發展,另一種語音處理技術越來越為人們所熟悉,那就是語音分組技術。語音分組是指將語音信號轉化為一定長度和速率的數字化語音包,采用存儲轉發的方法并以包的形式進行交換和傳輸。它隨著互聯網的普及,尤其是IP電話的普及而得到越來越多應用。但由于互聯網不能對傳輸帶寬提供保證,因此,語音包在其傳輸過程中就會產生延遲、抖動、包丟失等影響語音質量的因素。直到近年來由于低速率編解碼算法的出現和軟硬件性能的提高,人們才注意到分組語音技術的商業價值,并投入開發力量。

早期分組語音技術的應用大都采用軟件實現。近年來,隨著大規模集成電路的飛速發展,硬件價格大幅度下降,從而出現了許多用硬件實現分組語音的產品。硬件具有對數據處理速度快,可處理大量數據的特點,所以使用硬件實現分組語音可以很好地處理延遲、抖動、回聲抑制等問題,從而得到良好的音質。采用硬件實現分組語音的另一個優點是:在一個硬件電路中可以實現多種壓縮標準的分組語音,能很靈活地適應不同網絡環境下的多個語音終端的互通。

本文著重介紹采用一種專用的DSP芯片AMBE-1000實現語音分組的方法,并用這種方法實現了鐵路站場中的信號作業電話。由此可以看出,分組語音技術在一些專門領域應用的廣闊空間。

2AMBE-1000簡介

AMBE-1000是DigitalVoiceSystems公司的語音編解碼芯片,用來實現雙工的語音壓縮/解壓縮功能,能實現低傳輸速率下高質量的通話。它采用先進的AMBE壓縮算法,壓縮速率最低可達2.4Kb/s目前,這種算法以其能實現的低傳輸速率和高通話質量而在世界范圍內得到了廣泛應用,甚至用在下一代移動通信系統中。具體來說,AMBE-1000具有如下獨特之處:

*低硬件成本和高通話質量;

*無需輔助設備;

*比特差錯和背景噪聲良好的魯棒性;

*可變傳輸速率2.4Kb/s~9.6Kb/s;

*可自動插入舒適噪聲;

*可選的串行和并行接口;

*自帶回聲抑制功能;

*DTMF信號的檢測與產生;

*低功耗。

我們用這個芯片實現語音的分組化。最基本的應用可由圖1表示。

在實際應用中,語音壓縮數據要在信道中傳輸,須加入信道接口,完成對語音壓縮數據的加工、打包。最常用的接口一般可用單片機來實現。AMBE-1000的設計也使它很容易和單片機交換數據。AMBE-1000和單片機之間的數據接口有串行接口和并行接口,通信方式是主動方式還是被動方式,取決于可采集數據的信號是否由AMBE自身全部給出。我們采用并行數據線接口,AMBE-1000設為被動工作方式。此時當其RX_DI端輸入8kHz取樣的語音數據(16位線性編碼,8位A率或8位U率編碼)時,在其數據線上會得到周期性的壓縮語音數據(周期20ms,長度6字節,可達到2.4Kb/s的傳輸速率)。其控制線和數據線時序關系如圖2所示。

我們在EPR(EncoderPacketReady)信號置高后,當檢測到OBE(OutputBufferEmpty)置低時,立即捕捉數據線上的數據,便可得到幀同步碼13ECH,進而得到全部的語音數據,參考程序如下:

LOOP:JNBEPR,$

READ:MOVR0,#34

MOVR1,#30H

LL:MOVXA,@DPTR(DPTR:AMBE的地址)

MOV@R1,,A

INCR1

JBOBE,$

DJNZR0,LL

SJMPLOOP

AMBE-1000作為解碼器的寫時序與讀時序類似,可根據DPE(DecoderPacketReady)和IBF(InputBufferFull)信號編寫相應程序。

從AMBE-1000輸出的語音數據有固定的幀格式,每一幀有34字節數據,除去幀頭,有24字節語音數據。在20ms周期內,若24字節數據全部被填滿,則其傳輸速率為9.6Kb/s。若設傳輸速率為2.4Kb/s,則24字節語音數據格式中只有6字節語音數據,其余被0填充。我們用這6字節數據作為一帖,再加上幀頭(包括同步碼、地址碼、類型碼、校驗碼等),便可實現分組語音。

3應用實例

AMBE-1000讀寫一幀數據所需的時間遠小于20ms。也就是說在20ms時間內,除了讀1幀或寫1幀數據外,處理器還有大量的時間做其它的事。這使人們有可能在半雙工的低速信道內實現全雙工的語音通話。圖3為以AMBE-1000為核心實現的鐵路站場信號作業電話示意圖。

圖3中,用戶線接口及PSTN接口均以AMBE為核心。每一個終端可通過總線的PSTN接口接入PSTN電話網;各個電話終端可通過總線互通,但每一時刻只能有一個終端接入PSTN。終端的硬件構成如圖4所示。

篇(7)

2細化栽培

細化栽培技術就是要根據蔬菜病蟲無害化治理的要求,研究蔬菜生長發育的規律、環境調控與產量形成規律,研究無土栽培、設施栽培、節水灌溉及這些技術的應用與病蟲消長的關系;研究不同科蔬菜之間輪作技術、茬口安排技術、清潔田園技術和引種試驗推廣抗病蟲品種技術的綜合,因地制宜制定(設計)出一套適合當地不同類型菜地和不同蔬菜品種的生產技術規范,供基地生產應用。

3強化應用生物和物理防治技術

隨著無公害蔬菜生產技術的不斷演進,保護、利用天敵,蘇云金桿菌、Bt與病毒復配的復合生物農藥、愛比菌素、農抗120、農用鏈霉素、新植霉素等的應用,燈光誘殺、氣味誘殺,利用害蟲對顏色趨性進行誘殺及防蟲網、特種性能膜防病蟲等生物、物理防治技術已日益受到重視,部分已直接取代化學農藥的使用。今后要充分應用已有的技術成果,進一步開發、推廣生物和物理防治技術,力爭擴大取代化學農藥的使用面。

4病蟲害化學防治技術

優化蔬菜病蟲害化學防治技術,可大幅度提高農藥藥效,既控制病蟲的為害,又可防止農藥在蔬菜產品上的超標殘留。可從以下幾方面入手:

(1)按照國家有關規定,絕對禁止在蔬菜上使用劇毒、高毒、高殘留農藥。

(2)加強病蟲測報,掌握防治適期。蔬菜病蟲種類繁多,發生復雜,要抓住主要病蟲和病蟲發生的主要時期開展測報,一般害蟲的低齡階段和病害的發生初期為防治適期。

(3)對癥下藥。據中國蔬菜病蟲原色圖譜記載,我國有蔬菜病害1133種、蔬菜蟲害334種,但各地主栽的蔬菜種類和主要病蟲發生種類并不很多,防治前一定要確診后對癥下藥。

(4)講究施藥技術。實施化學防治時必須把農藥施用到目標物上才能有效地控制蔬菜病蟲的發生、發展,才能保護蔬菜的正常生長,若施藥“脫靶“就會降低防治效果和造成環境污染。

(5)嚴格按照有關規定控制農藥的使用濃度、使用量、劑型、使用次數、使用方式和依法執行農藥的安全間隔期。

5施肥措施

(1)重施有機肥,少施化肥。充足的有機肥,能不斷供給蔬菜整個生育期對養分的需求,有利于蔬菜品質的提高。農作物秸稈和畜禽糞污要加入發酵劑經過高溫堆積發酵,使其充分腐熟方可施入菜田。發酵時將新鮮的糞污裝入塑料袋中堆放或裝入缸中,加入熱水封口,在15℃以上的環境濕度下自然發酵。農作物秸稈加入速腐劑可直接還田,但將其粉碎后,堆腐發酵效果更好。堆腐的方法是每100kg粉碎的秸稈加入速腐劑1~2kg,堆垛后,表面用泥封嚴,一般20d左右成肥。

(2)重施基肥,少施追肥。實踐證明,在相同基肥條件下,追肥用量越大,綠色蔬菜生產要施足基肥,控制追肥,一般施用純氮225kg/hm2,2/3作基肥,1/3作追肥,深施。

(3)重視化肥的科學施用。一是禁止施用硝態氮肥。二是控制化肥用量,一般施氮量應控制在純氮2250kg/hm2以內。三是要深施、早施。一般氨態氮肥施于6cm以下土層,尿素施于l0cm以下土層。早施有利于作物早發快長,延長肥效,減少硝酸鹽積累。實踐證明,尿素施用前經過一定處理,還可在短期內迅速提高肥效,減少污染。處理方法為:取1份尿素,8~10份干濕適中的田土,混拌均勻后堆放于干爽的室內,下鋪上蓋塑料薄膜,堆悶7~10d即可做穴施追肥。四是要與有機肥、微生物肥配合施用。

(4)施肥因地、因苗、因季節而異。不同的地質,不同的苗情,不同的季節施肥種類,施肥方法要有所不同,低肥菜地,可施氮肥和有機肥以培肥地力。蔬菜苗期施氮肥利于蔬菜早發快長。夏秋季節氣溫高,硝酸鹽還原酶活性高,不利于硝酸鹽積累,可適量施用氮肥。

6參考文獻

篇(8)

論文關鍵詞:網絡;信息安全;密碼技術

計算機網絡信息安全的兩個基本需求是保密性和完整性。密碼技術是網絡安全通信的基礎,通過對通信內容進行加密變換,使未授權者不能理解其真實含義,以防止竊聽等被動性攻擊,保證信息的保密性;應用密碼體制的認證機制,可以防止篡改、意外破壞等對傳輸信息的主動性攻擊,以維護數據的完整性。保密和認證是信息系統安全的兩個重要方面,但是認證不能自動提供保密性,而保密也不能提供認證機制。密碼設計的基本思想是偽裝信息,使未授權者不能理解它的真正含義,未隱藏的信息稱為明文(Plaintext),偽裝后的信息稱為密文(Ciphetrext)。構成一個密碼體制的兩個基本要素是密碼算法和密鑰(Key)。在設計密碼系統時,總是假定密碼算法是公開的,真正需要保密的是密鑰。

基于密碼技術的訪問控制是防止數據傳輸泄密的主要防護手段。訪問控制的類型可分為兩類:初始保護和持續保護。初始保護只在入口處檢查存取控制權限,一旦被獲準,則此后的一切操作都不在安全機制控制之下。防火墻提供的就是初如保護。連續保護指在網絡中的入口及數據傳輸過程中都受到存取權限的檢查,這是為了防止監聽、重發和篡改鏈路上的數據來竊取對主機的存取控制。由于網絡是一個開放式系統,使得加密變得不僅對于E—mail,而且對于網絡通信都很重要。

l電子郵件安全與PGP

PGP是由美國的PhilpZimmermann設計的一種電子郵件安全軟件,目前已在網絡上廣泛傳播,擁有眾多的用戶。PGP是一個免費軟件,并且其設計思想和程序源代碼都公開,經過不斷的改進,其安全性逐漸為人們所依賴。

PGP在電子郵件發送之前對郵件文本進行加密,由于一般是離線工作,所以也可以對文件等其他信息進行加密。PGP中采用了公鑰和對稱密碼技術和單向Hash函數,它實現的安全機制有:數字簽名、密鑰管理、加密和完整性,它主要為電子郵件提供以下安全服務:保密性;信息來源證明;信息完整性;信息來源的無法否認。

PGP采用密文反饋(CFB)模式的IDEA對信息進行加密,每次加密都產生一個臨時128比特的隨機加密密鑰,用這個隨機密鑰和IDEA算法加密信息,然后PGP還要利用RSA算法和收信人的公開密鑰對該隨機加密密鑰進行加密保護。收信人在收到加密過的電子郵件后,首先用自己的RSA私有密鑰解密出IDEA隨機加密密鑰,再用這個IDEA密鑰對電子郵件的內容進行解密。密鑰長度為128位的IDEA算法在加密速度和保密強度方面都比56位密鑰的DES算法要好,而且PGP采用的CFB模式的IDEA,更增強了它的抗密碼分析能力。另外由于每次加密郵件內容的密鑰是臨時隨機產生的即使破譯了一個郵件,也不會對其他郵件造成威脅。PGP的基本操作模式是用IDEA作為信息加密算法,它可以提高加密、解密速度和增強保密性,同時對較短的隨機密鑰用較慢的RSA算法進行保護,以方便密鑰管理。

PGP數字簽名采用了MD5單向Hash函數和RSA公鑰密碼算法。要創建一個數字簽名,首先要用MD5算法生成信息的認證碼(MAC),再用發信人的RSA私有密鑰對此MAC進行加密,最后將加密過的MAC附在信息后面。MAC值的產生和檢查就是PGP的完整性保護機制。

PGP采用分散的認證管理,每個用戶的ID、RSA公開密鑰和此公開密鑰生成的時戳構成了這個用戶的身份證書。如果一個用戶獲得了一份被他所信任的朋友或機構簽名過的證書,他就可以信任這個證書并使用其中的公開密鑰與此證書的主人進行加密通信。如果愿意,他也可以對這份證書簽名使信任他的朋友也能信任和使用這份證書。PGP就是采用這種分散模式的公證機構傳遞對證書的信任,以實現信息來源的不可否認服務。

PGP的密鑰管理也是分散的,每個人產生自己的RSA公開密鑰和私有密鑰對。目前PGP的RSA密鑰和長度有3種普通級(384位)、商用級(512位)、軍用級(1024位)。長度越長,保密性越強,但加懈密速度也就越慢。

2WWW安全中的密碼技術

采用超文本鏈接和超文本傳輸協議(HTrP)技術的www是因特網上發展最為迅速的網絡信息服務技術,各種實際的因特網應用,如電子商務等大多數是以WWW技術為平臺,但是www上的安全問題也是非常嚴重的。目前,解決www安全的技術主要有兩種:安全套接字層SSL和安全HTYP協議。

2.1SSL

SSL是Netscape公司提出的建立在TCP/IP協議之上的提供客戶機和服務器雙方網絡應用通信的開放協議,它由SSL記錄協議和SSL握手協議組成,建立在應用層和傳輸層之間且獨立于應用層協議。和確定性。

SSL握手協議在SSL記錄協議發送數據之前建立安全機制,包括認證、數據加密和數據完整性。SSL握手協議開始的起點是客戶機知道服務器的公鑰,它通過服務器的公鑰加密向服務器傳送一個主密鑰,公鑰加密算法可以是RSA、Difife—Hellman或Fortezza—KEA。客戶機和服務器分別根據這個主密鑰計算出它們之間進行數據加密通信的一次性會話密鑰這樣會話密鑰就永遠不需要在通信信道上傳輸。客戶機和服務器使用這對會話密鑰在一個連接中按DES、RC2/RC4或IDEA算法進行數據加密,此連接用CONNECTION—ID和與此相關的會話密鑰作廢。所以每個連接都有不同的CONNECTION—ID和會話密鑰。由于主密鑰不直接參與加密數據,只在客戶機與服務器建立第一次連接時傳送(同時產生一個SESSION—ID),它的生存期與SESSION—ID有關。推薦的SESSION—ID在通信雙方的Cache(高速緩沖區)中保存的時間不大于100秒,這樣主密鑰被泄漏的機會很小。

SSL握手協議規定每次連接必須進行服務器認證,方法是客戶機向服務器發送一個挑戰數據,而服務器用本次連接雙方所共享的會話密鑰加密這個挑戰數據后送回客戶機。服務器也可以請求客戶機的認證,方法與服務器認證一樣。SSL記錄協議定義了SSL握手協議和應用層協議數據傳送的格式,并用MD2/MD5算法產生被封裝數據的MAC,以保證數據的完整性。

總之,SSL協議針對網絡連接的安全性,利用數據加密、完整換認證、公證機構等機制,實現了對等實體認證、連接的保密性、數據完整性、數據源點認證等安全服務。

2.2SHTTP

SHTTP是有EIT公司提出的增強GTTP安全的一種新協議,SHTTP定義了一個新方法secure和幾個新報文頭如Con—tent—Privacy—Domain、Content—Transfer—Encoding、Prearranged-Key—Info、Content—Type、Mac—info等。HTTP報文貝0以PKCS一7或PEM報文格式成為SHTI’P的報文體,從而獲得了這兩種安全增強型報文標準在數據加密、數字簽名、完整性等方面的保護。SHTrP還定義了新的I-I,TI’P報文頭、可重試的服務器狀態錯誤報告、新的HTML元素和Anchor屬性,使客戶機和服務器能夠通過對等的協商,在報文格式、認證方式、密鑰管理、簽名算法、加密算法和模式等方面達成一致,從而保證一次安全事務通信。

SHTIP所保護的是一次HTrP請求/應答協議的報文,而H,ITI’P連接是一種無狀態的連接,所以SHTI’P采用PKCS一7或PEM作為增強報文安全的主要手段。在數據加密方面,

篇(9)

在傳統的網絡協議中,主機地址既是端系統的標識又是路由的依據,如Internet中IP地址分為網絡標識和主機標識兩部分,路由協議根據分組中目的IP地址的網絡標識將該分組轉發到相應的子網,當主機移動到另外的子網時,其IP地址與子網標識不再對應,因此如何把分組路由到移動主機(特別是當主機邊移動邊通信時)是網絡協議首先要解決的問題。為了解決在Internet中支持主機移動的問題,IETF提出了移動IP協議,通過在移動主機的本地子網上設立來中轉發往移動主機的分組,移動主機移動到新的子網時必須向其本地注冊以通知其當前位置,這種中轉方式增加了本地及其鄰近網絡的負擔和分組傳輸的時延;于是卡內基·梅隆大學的Johnson等人提出了移動IP的路徑優化擴展,在可能的情況下將分組直接發送到移動主機;為了在主機移動時維護其網絡連接的完整性,減少移交(主機移動時路由的改變過程稱為移交)的時延和分組的丟失,提出了一些快速移交方案,它們充分利用了移動行為的本地特性從而減少移交時與遠程結點的控制信息交互,如層次移交方案和基于多點投遞的移交方案。與支持主機移動不同的另一種情況是支持基站(路由器)的移動,這種情況下,隨機移動的路由器(和相關主機)通過無線鏈路連接起來形成一個自治系統,傳統的“距離-向量”和“鏈路-狀態”路由算法在這種低網絡帶寬,高度動態的環境下效率不高,因此提出了一些新的路由算法,如保證無環路的逐跳“距離-向量”算法DSDV,基于“鏈路倒轉”的分布式算法TORA,緩存路由信息的動態源路由算法DSR,以及將DSR和DSDV相結合的AODV算法等,然而這些算法都基于它們各自的假設,在不同的情況下有不同的性能。

移動計算和無線網絡環境對運輸層協議的最大影響是協議的“端-端”性能,如在固定有線網絡中分組丟失的主要原因是網絡擁擠,當TCP檢測到分組丟失時執行擁擠控制和避免算法,減少擁擠控制窗口大小,限制重傳;而在移動計算和無線網絡環境下,分組丟失的主要原因是鏈路的高誤碼率和移交過程,TCP檢測到分組丟失時還執行類似的過程,因此降低了網絡的吞吐量,影響了“端-端”性能。針對此的改進有:“端-端”方案,如使用選擇應答(SACK)來加快重傳,或通過顯式丟失通知(ELN)來通知發送方分組丟失的原因;“分裂連接”方案,如間接TCP法將一個TCP連接分裂為從發送方到基站和從基站到接收方兩個連接;可靠的鏈路層方案,通過糾錯方法來屏蔽無線鏈路的低質量,如AIRMAIL。

二、對策

經分析認為,在移動無線網絡情況下,主機的移動模式和特征起著很重要的作用,若能根據主機的移動歷史預測其未來位置,做到服務預連接和資源預分配,則會顯著提高系統的效率。例如在主機移動的情況下,若能預測主機的下一移動位置,則移交的效率將會得到顯著的提高;又如在基站移動的情況下,如果移動頻率非常快,唯一可行的路由算法就是“泛洪”(flooding);如果移動頻率相當慢,則現有的協議也能滿足需要。

對于運輸層協議的性能問題,上述方案存在兩個問題,一是只考慮到分組丟失原因的轉移對協議性能的影響,沒有考慮其他因素如連接RTT的劇烈變化、鏈路的帶寬和時延不對稱對協議性能的影響;二是當用戶移動時網絡環境變化,影響協議性能的因素也不斷變化,因此單一的改進并不能滿足所有情況的需要。由XTP協議機制和控制策略相分離認為:移動計算和無線網絡環境下的運輸層協議也應該采用協議機制和控制策略相分離的方法,協議機制給出完成特定協議過程所需的協議支撐,控制策略關心如何利用協議機制完成滿足特定需要的協議過程,當主機在網絡中移動時,動態調整控制策略以滿足協議性能的需要。

參考文獻

[1]C.Perkins.IPmobilitysupport.RFC2002,1996,(10).

[2]A.Myles,DavidB.Johnson,etalAMobileHostProtocolSupportingRouteOptimizationandAuthentication.IEEEJSAC,1995,(6).

[3]R.CaceresandV.Padmanabhan.FastandScalableHandoffsinInternetwork.InProc.1stACMConf.OnMobileComputingandNetworking,1996,(11).

[4]S.Seshan,H.Balakrishnam,etal.HandoffsinCellularWirelessNetworks:TheDaedalusImplementationandExperience.KluwerJournalonWirelessPersonalCommunications,1996.

[5]C.Perkins,PravinBhagwat.HighlyDynamicDestination-SequencedDistance-VectorRouting(DSDV)forMobileComputers.SIGCOMM’94,1994,(8).

篇(10)

證券投資技術分析通過分析證券市場過去和現在的市場行為(成交量、成交價、價格變化的時間和空間),來預測證券價格未來的變化趨勢。在現實的證券投資活動中,技術分析占有非常重要的地位,在證券投資的理論體系中,技術分析與證券投資基本分析,證券投資組合理論具有同等重要的地位。

技術分析理論是建立在三大假設基礎之上的,技術分析的第一假設認為市場行為會涵蓋一切信息,影響股票價格變化的所有因素,都會反映在市場行為之中。故此,我們在預測股票價格的未來變化趨勢時,沒有必要對影響股票價格的因素具體是什么作過多的關心,我們的注意力應該放在對市場行為的研究上,只要我們弄清了股票價格漲跌、成交量增減、價格變化的時間空間等市場行為結果的含義,我們就可以預測股票價格的未來變化趨勢。這一假設對技術分析具有非常重要的意義,是技術分析的理論前提。如果不承認這一假設,或者說這一假設并不存在,技術分析將會失去其存在的價值。如果市場行為并沒有包括全部的、所有的影響股票價格的因素,那么我們僅僅使用研究市場的成交價、成交量和價格變化的時間和空間這些市場行為的最終結果的方法,就想達到預測和把握市場價格的未來變化趨勢的目的,就只能是以偏概全、一廂情愿了。

對于技術分析的這一重要假設和理論前提,我國理論界占主流地位的觀點認為,是具有一定合理性的。筆者認為,這一看法是值得商榷的,無論從理論上還是從投資實踐上來看,都不能夠證明市場行為可以涵蓋一切信息的結論是正確的,這一假設究竟具有多少合理的成分,值得我們深入地進行研究。

市場行為涵蓋一切信息并無可靠性

任何一個假設的成立都必須經過理論和實踐的檢驗,只有在理論上具有可靠性,在實踐中具有可操作性,我們才能夠得出結論說這一假設是正確的。市場行為涵蓋一切信息在理論上具有可靠性嗎?我們認為,回答應該是否定的。

首先,技術分析所說的市場行為,實質上是指市場參與者即投資者的行為。正是投資者看漲或看跌的預期、買入或賣出的決策導致了股票價格的波動和成交量的變化,而投資者預期的形成是對影響股票價格的多種因素進行理性分析的結果。這里似乎可以可推出一個順理成章的結論,這就是影響股票價格波動的因素決定了投資者的預期,而投資者的預期又決定了投資者的行為,我們分析市場上投資者的行為結果(成交量、成交價),實際上就是分析投資者的預期,就是分析影響股票價格的所有因素。認真分析我們就不難發現,這一系列推理在邏輯上并不具有必然的聯系,其可靠性值得懷疑。不錯,投資者在投資決策過程中,首先要對影響股票價格未來變化的因素進行研究,而后形成對股票價格未來走勢的判斷,最后作出或買或賣的決定。但是,問題的關鍵在于,投資者在對影響股票價格變化的因素進行分析時,必然會帶有不同的主觀個性特征。投資者對影響股票價格變化因素的分析過程實質上是一個認識過程,一個能動的反應過程,這一過程不能不受到投資者理論素養、價值標準、思維方式、個性特征和心理狀態的影響。面對同樣的客觀條件,不同的投資者完全可以作出不同的結論,采取不同的投資決策,從而表現出不同的甚至相互矛盾的市場行為。這樣的市場行為究竟具有多少客觀成分,究竟在多大程度上客觀地反映了現實情況,值得研究。顯然,我們不能祈求僅僅用這些行為的客觀表現(成交價格和成交量的變化情況)就可以把握所有的信息、就可以把握所有的影響股票價格變化的因素。

其次,如果說市場行為可以涵蓋所有信息的結論成立,它需要的一個基本條件是,這里所說的市場行為必須是理性的行為,而不是非理性的行為。那么,投資者在投資過程中所表現的行為是理性的嗎?按照經濟學的一般假定,從個體的角度來看,作為經濟活動參預者的投資者同任何其他經濟主體一樣必然具有追求收益(利潤、效用)最大化的理。但是,這種個體的理并不能夠保證集體行為也是理性的,在很多情況下,正是個體的理性導致了集體的非理性。技術分析所說的市場行為,顯然指的是投資者的集體行為,而并非投資者的個體行為,這種投資者的集體行為,我們不能夠從理論上證明它必然是理性的行為。現實生活告訴我們,證券投資者集體行為往往表現出很強的非理性成分,股票價格的暴漲暴跌、大起大落、股市泡沫的快速形成和迅速破滅,己經充分說明了這一點。

再次,證券的虛擬經濟性質,已經證明證券市場的交易行為(成交價格、成交量)并不能夠充分的、客觀的反映影響證券價格變化的所有因素。股票、債券和證券衍生品代表的是金融權益資產,屬于虛擬經濟的范疇。證券的運動不僅與生產資本的運動相脫離,而且還與其所代表的資金的運動相脫離。在實體經濟中,供求規律決定著交易價格的波動,價格會自動回歸到市場供求的均衡點。虛擬經濟的交易價格則取決于人們對未來的預期,價格上升會刺激人們的獲利欲望,購買需求擴張,從而推動價格的進一步上升;價格下跌,又將刺激人們的止損欲望,供給急劇增加,需求急劇萎縮,從而導致價格的進一步下跌。當交易進入某種難以為繼的狀態時,就會出現價格的急劇變化,市場價格很難回到真正的市場供求平衡點。由此可見,虛擬經濟具有天然的制造經濟泡沫和投機的成份,其價格具有極大的誤導作用。

最后,從有效市場理論的角度來看,市場行為涵蓋一切信息的結論對證券的投資決策并不具有任何的指導意義。有效市場理論,是1965年美國經濟學家法碼(EugeneFama)最先提出來的。在這一理論中,法碼將證券市場分為弱有效型、半強有效型、強有效型三種形式。這三種不同的市場形式的區別,主要表現為證券價格對市場信息的反應程度不同。在強有效型市場中,證券價格能夠充分和快速地反映所有的相關信息,任何人都不能夠通過對信息的私人占有而獲得超額利潤。通俗地說,在一個強有效型的市場中,證券價格的變化是隨機的和不可預測的。顯然,如果我們認為證券價格的變化這一市場行為的最重要的表現已經反映了市場的所有信息,證券市場是強有效型的,技術分析的理論前提是正確的,我們就會得出證券價格的變化是隨機的和不可預測的結論,從而也就否認了技術分析存在的價值。反之,如果我們肯定運用技術分析可以預測證券價格的未來變化趨勢,就必然要否認證券價格的變化能夠反映市場所有信息的結論,從而也就否認了技術分析所賴以存在的理論前提。

評價技術分析須實事求是

篇(11)

二、組合樓板的工作技術分析

組合樓板樓承板的主要工作技術主要是將樓承板與混凝土進行結合,使其形成一個整體的結構構件。根據樓承板和混凝土所各自具有的特性,將混凝土放置在上部來承受壓力,同時發揮樓承板所具有的抗拉性,來承受組合版下部的拉力作用。由混凝土和樓承板共同作用形成承載能力。由于組合樓板是鋼材料建筑施工中重要的結構構件,其在抗彎、抗壓、抗拉等方面都表現出較好的性能,同時在防火、防震等方面的適應性較強。下面將對組合樓板的技術進行詳細的分析和描述。

1受力技術。組合樓板的接體性是指樓承板與樓板混凝土之間一體化的結合程度,其對于組合樓板的承載力有著重要的影響。由于組合樓板的接體性受到來自外界各方面的影響,具體的作用影響較為復雜,社會各界學者對于組合樓板的接體性的研究還沒有產生一個統一的量化標準。組合樓板中混凝土與樓承板之間的抗滑移能力主要表現在材料之間的化學粘合力、機械咬合力以及摩擦力等方面,其抗滑移能力主要受到樓承板板型、規格尺寸以及表面花紋類型的影響。

主站蜘蛛池模板: 和田县| 普陀区| 灵山县| 九江县| 铅山县| 仙桃市| 临泉县| 大荔县| 岢岚县| 玉山县| 神池县| 慈利县| 合川市| 依兰县| 武强县| 布尔津县| 喀喇| 筠连县| 黑河市| 莲花县| 龙南县| 湟源县| 翁牛特旗| 喜德县| 吉林省| 新乡县| 广安市| 安顺市| 乐平市| 营口市| 措勤县| 天水市| 宜城市| 海宁市| 东台市| 瑞安市| 织金县| 长阳| 南涧| 简阳市| 应用必备|