緒論:寫作既是個人情感的抒發,也是對學術真理的探索,歡迎閱讀由發表云整理的11篇消防設計論文范文,希望它們能為您的寫作提供參考和啟發。
隨著消防問題越來越受到重視,建筑給排水中的消防問題也同時受到了同行們的關注,消防設計規范作為設計人員必須遵守的法律條文,也讓設計人員開始更多的學習和思考,本人最近在網易給排水在線消防板塊擔任了版主,通過和廣大同行網友的交流,發現了很多規范上面的語焉不詳之處,通過討論也難以得出明確的結論,有些問題值得拿出來與各位同行商榷,希望能夠和大家交流,得到大家批評和指正,同時能夠引起規范編制組各位專家的注意,在以后的規范編制修改中考慮到這些問題。
本人認為,《規范》的編制里面有個平衡性的把握問題,太粗了不易于具體的操作執行中的把握,太細了又難免有些地方不能照顧到方方面面,讓一些具體有困難的設計難于真正貫徹。因為規范的條文是用來直接在設計中體現的,所以應該具有可操作性,應該十分明確,如果有些地方不能明確的,如規范修訂中各方具有爭議的,建議就應該提高到上一層做出上面一層應該保證到的,而不應語焉不詳、含糊其辭的列出一條,這樣最讓設計者和審圖、消防審查人員和各方人員難于把握,造成各方理解產生歧義,首先是設計人員在方案階段就無從把握,舉個例子,今天我這樣認為,做好方案,消防審查某個人員認為可行,過兩天時施工圖做好了,審查人員換了個人,對某條規范的理解不一樣,施工圖的工作變化就大了,這樣的事情經常發生,造成很大的浪費,非常不利于大家的工作,造成各方之間的矛盾,同時也給某些腐敗環節提供機會。違反了規范編制的初衷。
現打算將平時設計中的一些問題理出,與大家一起分析探討。限于篇幅,打算分幾篇文章逐段論述,本次僅討論一點,關于屋頂水箱設置的問題:
《建筑設計防火規范》GBJ16-87(2001版),以下簡稱《建規》“第8.6.3條設置常高壓給水系統的建筑物,如能保證最不利點消火栓和自動噴水滅火設備等的水量和水壓時,可不設消防水箱。
設置臨時高壓給水系統的建筑物,應設消防水箱或氣壓水罐、水塔,應符合下列要求:
一、應在建筑物的最高部位設置重力自流的消防水箱;
二、室內消防水箱(包括氣壓水罐、水塔、分區給水系統的分區水箱),應儲存10min的消防用水量。當室內消防用水量不超過25L/s,經計算水箱消防儲水量超過12m3時,仍可采用12m3;當室內消防用水量超過25L/s,經計算水箱消防儲水量超過18m3,仍可采用18m3。
1、在以上兩條中首先有關于臨時高壓和常高壓的定義問題,臨時高壓大家都知道,而常高壓規范在條文解釋中所述的“即設有高位水池或區域高壓給水系統”中的區域高壓給水系統,由于沒有明確的界定,所以在實際設計中難于把握,首先說區域概念的范圍難于把握,到底多大才算是區域,是幾棟樓還是一個小區還是幾個小區抑或是一片廠區,均不得而知,所以在平時的設計中只有高位水池可以得到大家的一致認可,而區域高壓的理解有很多異議,竊認為其實在滿足了二級負荷的前提下,如果消防設備齊全,有獨立的兩路水源供水,或是一路水源但是有含室內室外消防水量的消防水池,平時有專人值班的消防泵房或是消防控制中心,即可以認為是常高壓系統,因為即使消防作為重中之重,它的可靠性把握,也有一個“度”的問題,因為任何安全保險都不是絕對的,因為即使是規范定義的常高壓高位水池,也有檢修維護和清洗的時間。
以上是本人粗淺的看法,并不認為一定正確,但是還是認為如果無法明確那么不如不寫出,至少不會造成大家在這上面費盡思量,仍然找不出統一的認識。
2、再者就是“室內消防水箱(包括氣壓水罐、水塔、分區給水系統的分區水箱),應儲存10min的消防用水量”,這里十分鐘的消防水量我們認為應該包括噴淋等其他消防設備的用水量,然而按照《自動噴水滅火系統設計規范》GB50084-2005(以下簡稱《噴規》)“10.3.1采用臨時高壓給水系統的自動噴水滅火系統,應設高位消防水箱,其儲水量應符合現行有關國家標準的規定。消防水箱的供水,應滿足系統最不利點處噴頭的最低工作壓力和噴水強度”這里面說的“系統最不利點處噴頭的最低工作壓力和噴水強度”到底是指最不利點一個噴頭的水量還是同10.3.2中“最不利處4只噴頭在最低工作壓力下的10min用水量”,還是最不利處整個保護面積里面10分鐘的用水量,這個問題無論在《建規》還是《噴規》或是即將出版的《建規》送審稿中均沒有一個明確的說法。
舉個例子,如果一棟帶地下停車庫的多層綜合樓,有噴淋系統,采用中危Ⅱ級的噴淋強度計算,噴淋水量按照最不利點的保護面積來計算,假如水量是30l/s,具體根據噴頭布置的疏密及選用管徑的大小有些差異,假如室內消火栓系統水量是10ls/,如果噴淋按照整個保護面積30l/s的流量計算10分鐘的水量已經是18立方了,那么由于“當室內消防用水量超過25L/s,經計算水箱消防儲水量超過18m3,仍可采用18m3”無需再計算其他水量即可選取18m3水箱了,如果按照“最不利處4只噴頭在最低工作壓力下的10min用水量”計算那么4只噴頭的水量應該在5l/s左右,即水箱需要在消火栓用水量10×10×60=6m3和下加上5×10×60=3m3的水量,為9m3,與前面所述18m3有很大的差異。
我們平時設計中認為因為少有水箱能夠滿足噴淋要求水頭的,所以都是需要設增壓系統的,所以罐里有十分鐘的水量,水箱就不考慮了,但是我們注意到《噴規》10.3.2條說的“不設高位消防水箱的建筑,系統應設氣壓供水設備。氣壓供水設備的有效水容積,應按系統最不利處4只噴頭在最低工作壓力下的10min用水量確定。”那么其中的話嚴格理解是不設消防水箱時氣壓供水設備的有效水容積,應按系統最不利處4只噴頭在最低工作壓力下的10min用水量采用,然而即使采用了氣壓供水供水設備,在有水箱時水箱是否還應該考慮噴淋儲水量,如果我們以規范字面意思理解,還是需要。
一、七一九層單元住宅應設室內消防給水
《建筑設計防火規范》(GBJ16一87)指出:超過七層的單元式住宅、超過六層的塔式住宅、通廊式住宅,底層設有商業網點的單元式住宅應設室內消防給水。根據規范.七層半以上住宅或底層為商店的六層以上單元住宅,室內需設消防給水。近年來,隨著人們生活水平的提高.對住宅室內裝修要求也愈來愈高。住戶搬進新居前一般要重新裝修。吊頂、壁櫥、組合家具、地毯及室內各種陳設均為易燃品,家用電器品種也不斷增加。顯然引起火災的可能性有所增大。從保護人民財產和人身安全來講,室內確實需配置消防給水設施。
二、室內消火栓和室內消防箱
單元式住宅,室內消火栓的位置都在樓梯間休息平臺處。樓梯間面積狹窄,為了不影響住戶搬運物件上下,消防箱應盡吊考慮暗裝或半暗裝,這得同結構配合。
現行《低規》‘樸定的室內消火栓不利于撲滅初期火災。因為火災時,要在短短的兒十秒至數分鐘內扣上水龍帶、水槍.展開20一25m長的水龍帶,打開閥門,舉起具有相當壓力的水槍進行火火,這對未經過專門消防訓練的人有一定困難,對婦女、老人、兒童就更為困難了。所以普通消火栓設備并不適用消防軟管卷盤(少「’徑滅火‘喉)取用方便·展開容易,·般居民均能使用只是出水鼠較小.但對初期火災撲火還是很有用的。這總比居民無力或不會使用消火栓而用臉盆、水桶盛水火火有效得多。建議,住宅消防箱內’戊配置一套消防軟管卷盤。并預留DN65消火栓l,以供消防隊員使用(不宜預留DN50消火栓口,因省內各地消防隊均配用DN65水龍帶)
三、消防水量和水壓
《建筑設計防火規范》指出,消防水箱,卜應儲存10分鐘消防用水室內消火栓的布置應保證有.兩支水槍的允實水栓同時達到室內任何部位。水槍的充實水柱般不應小十7m。《低規》消防給水的設計思想是立足于自救.既要保證水量又要保證水壓。由于建筑和結構的要求,水箱不可能抬得很高,所以一般的屋面水箱是難以保證建筑物頂部一、二層消防用水的水壓。為達到消防要求,常用的做法有1、設消防水池、水泵、消火栓箱內增設消防水泵啟動按鈕。2、增設氣壓消防給水裝置。這兩種做法理論上是可行的.但在實際中卻有困難。1、住宅改造區一般位于城市.黃金地帶”,地價昂貴,難以找到適宜設消防水池、水泵地點。2、若采用氣壓消防給水設施,消防管網中長期承受高壓,增加系統滲漏危險。3、與高層建筑和新建住宅區不同,住宅改造區規模不大,無專門管理機構。消防水泵、氣壓給水裝置若長期不用.擱在一邊。難以保證在消防時可以Lr:常使用。所以我認為七一九層住宅只要求消防水蛾而不要求其水壓值。10分鐘消防用水儲于屋頂水箱中,初期火災頂部一、二層消防水壓不足,可否采取其它火火器材補救。10分鐘后由消防車從室外消火栓取水經消防車水泵加壓裝置和水泵結合器進入室內消防管道火火。這種做法更適應實際情況。
四、消防水箱
l、多層建筑室外消防給水管網設計流速的確定。
對于底層帶商業網點的多層住宅,多層綜合樓,普通辦公樓或廠房,庫房等工程,在市政給水管道能夠滿足室外消防用水量的情況下,同時按多層建筑立足于“外救”的原則,設計一般采用設置屋頂前10分鐘消防水箱,及底層設置室外水泵接合器的消防供水方式,消防管網內平時水壓較低,當發生火災時,由消防車通過水泵接合器向室內消防系統加壓送水,以達到消防滅火的目的,根據我國現行(建筑設計防火規范)GBJ16—87(以下簡稱(建規))第8.l.3條“室外消防給水可采用高壓或臨時高壓給水系統或低壓給水系統,……如采用低壓給水系統,管道的壓力應保證滅火時最不利點消火栓的水壓不小于10m水柱(從地面算起)。”并注明消火栓給水管道設計流速不宜超過2.5m/s,而廈門消防部門規定室外消防給水管道流速不能大于1.2m/s,筆者對此規定有不同的看法。消防部門的依據是市政部門所提供的市政管道流速為1.2m/s,故在選擇室外消防給水管的流速也不大于l.2m/s,但筆者認為管道流速應與市政管道壓力有關,只要市政給水管道壓力足夠大,室外消防管道流速又滿足規范不宜大于2.5m/s的要求,既能滿足消防流量的設計要求。
筆者最近設計了一個廠區內,一幢建筑面積3500m2的六層綜合樓和一幢建筑面積3400m2的丙類五層廠房,綜合樓室內消防流量為15l/s,室外消防流量為20l/s,廠房室內消防流量為10l/s,室外消防流量為25l/s,室個外消防流量均為35l/s,按同一時間內一次火災次數設計,室外消防給水管與市政給水管形成室外環狀管網,并設有兩個接口,在設計中室外消防給水管若按流速不大于1.2m/s計算時,應選擇d200的供水管,按流速不大于2.5m.s計算時,選擇d150的供水管即可,本工程室外消防管從市政引入點到滅火時最不利點室外消火栓,管長共50米,設計選用d150的鑄鐵管,管道流速V=2.01m/s,市政引入點至最不利點室外消火栓管道沿程損失為:
Σh=Q2×A×L
式中:Q—管道流量(m3/s)本工程Q=0.035m3/s
A—鑄鐵管比阻;d150時A=41.85
L——管道長度(m)L=50m
故:Σh=0.0352×41.85×50=2.56m
管道總損失:H1=1.2Σh=1.2×2.56=3.07m
按“建規”第8.1.3條室外消防管最不利點消火栓的壓力不小于10米水柱,所以本工程需要市政所提供的水壓計算如下:
H=10十H1=10十3.07=13.07米水柱=0.131MPa(這里市政給水引入點的黃海標高與最不利點消火栓黃海標高相同)。
而市政所提供的該地段市政水壓不小于0.30MPa,遠遠滿足室外消防管所需要的市政水壓,所以本工程室外消防管網流速可按規范規定的不大于2.5m/s的速度計算,否則按消防部門所規定的不大于1.12m/s流速進行計算,本工程應選用d200的室外給水管,這樣勢必放大與市政接口的水表口徑,即選用兩個L×S150的水表,根據廈門自來水供水章程規定,給水增容費是以水表口徑來收費的,而按規范所要求的不大于2.5m/s流速計算,選用兩個L×S100的水表即可。這樣選用l×S150比選用L×Sl00的水表增容費多12.8萬元,還要加上管道,配件所增加的費用,即給開發商造成了不必要的浪費。
筆者認為室外消防管道流速不必拘于消防部門所規定的不大于1.2m/s,而應結合市政水壓情況,按規范所要求的流速不大于2.5m/s進行設計,這樣我們在設計中既能滿足規范要求,又能達到科學,節省投資的目的。
2、自動噴水滅火采用臨時高壓給水系統時高位水箱設置高度的確定。
我國現行規范《高層民用建筑設計防火規范》(GB50045—95)(以下簡稱《高規》)第7.4.7.2條對高位消防水箱的設置高度有以下規定即“高位消防水箱的設置高度應保證最不利點消火栓靜水壓力,當建筑高度不超過100m時,高層建筑最不利點消火栓靜水壓力不應低于0.07MPa,當建筑高度超過100m時,高層建筑最不利點消火栓靜水壓力不應低于0.15MPa,當高位消防水箱不能滿足上述靜壓要求時應設增壓設施”,通常設計中消火栓系統與自動噴水滅火系統共用一個高位消防水箱,即由此選定的消水箱的高度能否滿足自動噴水滅火系統的要求?根據《自動噴水滅火系統設計規范》(GBJ84—85)(以下簡稱《自噴》)第2.0.2條中規定“濕式噴水滅火系統噴頭工作壓力9.8×l04帕斯卡,最不利點噴頭最低工作壓力均不小于4.9x104帕斯卡(0.5公斤/厘米2)”的規定,高位水箱最低水位與最不利點噴頭的幾何高差計算如下:
H≥H1十H2十H3
式中:H1——最不利噴頭工作壓力(mH2O)
H2——自動噴水滅火系統的管道沿程水頭損失(∑h)和局部水損失的總和(mH2O)
H3——報警閥的壓力損失(mH2O)
其中:H1按《自噴》第2.0.2條取5mH2O
H2=1.2∑h
∑h=∑ALQ2(式中Q=K×P0.5=1.33×0.50.5=0.94l/s,流量Q=0.94l/s,亦符合(高規)第7.4.8條,對自動噴水滅火系統不應大于ll/s的規定)。
根據工程實例,當管道設計流量為0.94L/s時,主要管道沿程損失為管徑DN25的給水管,當管>DN50以后的給水管管道損失可勿略不計,筆者是以較不利的噴頭布置,計算得:
∑h=2.0米H2=1.2∑h=2.4米
H3=0.00869Q2d=0.01米(報警閥公稱直徑為DN150)
故H=H1十H2十H3=5十2.4十0.1=7.41米
即高位消防水箱設置高度要滿足最不利點噴頭靜壓7.41米(0.074MPa)以上,若最不利層自動噴水滅火系統的最小管徑選為DN32的給水管時,計算H≥6.0米,即高位消防水箱滿足最不利點噴頭靜壓6.0米(0.06MPa)以上,比(高規)第7.4.7.2條消火栓水箱的設置高度還需提高1.0米左右(以最不處層層高計算),這樣即不用增設增壓設置。
1.1消防信息化的范疇
消防信息化是利用先進可靠、實用有效的現代計算機、網絡及通信技術對消防信息進行采集、儲存、處理、分析和挖掘,以實現消防信息資源和基礎設施高程度、高效率、高效益的共享與共用的過程。
消防信息化建設的范疇包括通信網絡基礎設施建設、信息系統建設及應用、安全保障體系建設、運行管理體系建設和標準規范體系建設等內容。
1.2通信網絡基礎設施建設
全國消防通信網絡從邏輯上分為三級:一級網是從部消防局到各省(區、市)消防總隊以及相關的消防科研機構和消防院校;二級網是各省(區、市)消防總隊到市(地、州)消防支隊;三級網是各市(地、州)消防支隊到基層消防大隊及中隊。對北京、上海、天津、重慶等直轄市,二級網和三級網可合并考慮。每一級網絡所在機關均應建設本級局域網。
1.3安全保障體系建設
安全保障體系是實現公安消防機構信息共享、快速反應和高效運行的重要保證。安全保障體系首先應保證網絡的安全、可靠運行,在此基礎上保證應用系統和業務的保密性、完整性和高度的可用性,同時為將來的應用提供可擴展的空間。安全保障體系建設的基本要求是:
(1)保障網絡安全、可靠、持續運行,能夠防止來自外部的惡意攻擊和內部的惡意破壞;
(2)保障信息的完整性、機密性和信息訪問的不可否認性,要求采取必要的信息加密、信息訪問控制、訪問權限認證等措施;
(3)提供容災、容錯等風險保障;
(4)在確保安全的條件下盡量為網絡應用提供方便,實行全網統一的身份認證和基于角色的訪問控制;
(5)建立完備的安全管理制度。
二、消防信息化建設中面臨的網絡安全問題
2.1計算機網絡安全的定義
從狹義的保護角度來看,計算機網絡安全是指計算機及其網絡系統資源和信息資源不受自然和人為有害因素的威脅和危害;從其本質上來講就是系統上的信息安全。
從廣義來說,凡是涉及到計算機網絡上信息的保密性、完整性、可用性、真實性和可控性的相關技術和理論都是計算機網絡安全的研究領域。
2.2網絡系統的脆弱性
2.2.1操作系統安全的脆弱性
操作系統不安全,是計算機不安全的根本原因。主要表現在:
(1)操作系統結構體制本身的缺陷;
(2)操作系統支持在網絡上傳輸文件、加載與安裝程序,包括可執行文件;
(3)操作系統不安全的原因還在于創建進程,甚至可以在網絡的結點上進行遠程的創建和激活;
(4)操作系統提供網絡文件系統(NFS)服務,NFS系統是一個基于RPC的網絡文件系統,如果NFS設置存在重大問題,則幾乎等于將系統管理權拱手交出;
(5)操作系統安排的無口令人口,是為系統開發人員提供的邊界入口,但這些入口也可能被黑客利用;
(6)操作系統還有隱蔽的信道,存在潛在的危險。
2.2.2網絡安全的脆弱性
由于Internet/Intmnet的出現,網絡安全問題更加嚴重。可以說,使用TCP/IP協議的網絡所提供的FTP、E-Mail、RPC和NFS都包含許多不安全的因素,存在許多漏洞。
同時,網絡的普及使信息共享達到了一個新的層次,信息被暴露的機會大大增多。Intemet網絡就是一個不設防的開放大系統,誰都可以通過未受保護的外部環境和線路訪問系統內部,隨時可能發生搭線竊聽、遠程監控、攻擊破壞。
2.2.3數據庫管理系統安全的脆弱性
當前,大量的信息存儲在各種各樣的數據庫中,而這些數據庫系統在安全方面的考慮卻很少。而且,數據庫管理系統安全必須與操作系統的安全相配套。
2.2.4防火墻的局限性
盡管利用防火墻可以保護安全網免受外部黑客的攻擊,但它只能提高網絡的安全性,不可能保證網絡絕對安全。
2.3基于消防通信網絡進行入侵的常用手段分析
由于消防工作的社會性,消防信息化建設很重要的一方面就是利用信息化手段強化為社會服務的功能,積極通過網絡媒體為社會提供各類消防信息,如消防法律法規、消防知識等,促進消防工作社會化;在網上受理消防業務,公布依法行政的有關信息,為社會提供服務,增強群眾對消防工作的滿意度。在利用網絡提高工作效率和簡化日常工作流程的同時,也面臨許多信息安全方面的問題,主要表現在:
2.3.1內部資料被竊取
現在消防機關上傳下達的各種資料基本上都要先經過電腦錄入并打印后再送發出去,電腦內一般都留有電子版的備份,若此電腦直接接入局域網或Intemet,就有可能受到來自內部或外部人員的威脅,其主要方式有:
(1)利用系統漏洞入侵,瀏覽、拷貝甚至刪除重要文件。前段時間在安全界流行一個名為DCOMRPC的漏洞,其涉及范圍非常之廣,從WindowsNT4.0、Windows2000、WindowsXP到WindowsServer2003。由于MicrosoftRPC的DCOM(分布式組件對象模塊)接口存在緩沖區溢出缺陷,如果攻擊者成功利用了該漏洞,將會獲得本地系統權限,并可以在系統上運行任何命令,如安裝程序,查看或更改、刪除數據或是建立系統管理員權限的帳戶等。目前關于該漏洞的攻擊代碼已經涉及到的相應操作系統和版本已有48種之多,其危害性可見一斑;
(2)電腦操作人員安全意識差,系統配置疏忽大意,隨意共享目錄;系統用戶使用空口令,或將系統帳號隨意轉借他人,都會導致重要內容被非法訪問,甚至丟失系統控制權。
2.3.2Web服務被非法利用
據統計,目前全國各級公安消防部門在因特網上已建立近100個網站,提供消防法規、危險物品基礎數據、產品質量信息、消防技術標準等重要信息,部分支隊還對轄區內重點單位開辟網上受理業務服務,極大地提高了工作效率,但基于網頁的入侵及欺詐行為也在威脅著網站數據的安全性及可信性。其主要表現在:
(1)Web頁面欺詐
許多提供各種法律法規及相關專業數據查詢的站點都提供了會員服務,這些會員一般需要繳納一定的費用才能正式注冊成為會員,站點允許通過信用卡在線付費的形式注冊會員。攻擊者可以通過一種被稱為Man-In-the-Middle的方式得到會員注冊中的敏感信息。
攻擊者可通過攻擊站點的外部路由器,使進出方的所有流量都經過他。在此過程中,攻擊者扮演了一個人的角色,在通信的受害方和接收方之間傳遞信息。人是位于正在同心的兩臺計算機之間的一個系統,而且在大多數情況下,它能在每個系統之間建立單獨的連接。在此過程中,攻擊者記錄下用戶和服務器之間通信的所有流量,從中挑選自己感興趣的或有價值的信息,對用戶造成威脅。
(2)CGI欺騙
CGI(CommonGatewayInterface)即通用網關接口,許多Web頁面允許用戶輸入信息,進行一定程度的交互。還有一些搜索引擎允許用戶查找特定信息的站點,這些一般都通過執行CGI程序來完成。一些配置不當或本身存在漏洞的CGI程序,能被攻擊者利用并執行一些系統命令,如創建具有管理員權限的用戶,開啟共享、系統服務,上傳并運行木馬等。在奪取系統管理權限后,攻擊者還可在系統內安裝嗅探器,記錄用戶敏感數據,或隨意更改頁面內容,對站點信息的真實性及可信性造成威脅。
(3)錯誤和疏漏
Web管理員、Web設計者、頁面制作人員、Web操作員以及編程人員有時會無意中犯一些錯誤,導致一些安全問題,使得站點的穩定性下降、查詢效率降低,嚴重的可導致系統崩潰、頁面被篡改、降低站點的可信度。
2.3.3網絡服務的潛在安全隱患
一切網絡功能的實現,都基于相應的網絡服務才能實現,如IIS服務、FTP服務、E-Mail服務等。但這些有著強大功能的服務,在一些有針對性的攻擊面前,也顯得十分脆弱。以下列舉幾種常見的攻擊手段。
(1)分布式拒絕服務攻擊
攻擊者向系統或網絡發送大量信息,使系統或網絡不能響應。對任何連接到Intemet上并提供基于TCP的網絡服務(如Web服務器、FrP服務器或郵件服務器)的系統都有可能成為被攻擊的目標。大多數情況下,遭受攻擊的服務很難接收進新的連接,系統可能會因此而耗盡內存、死機或產生其他問題。
(2)口令攻擊
基于網絡的辦公過程中不免會有利用共享、FTP或網頁形式來傳送一些敏感文件,這些形式都可以通過設置密碼的方式來提高文件的安全性,但多數八會使用一些諸如123、work、happy等基本數字或單詞作為密碼,或是用自己的生日、姓名作為口令,由于人們主觀方面的原因,使得這些密碼形同虛設,攻擊者可通過詞典、組合或暴力破解等手段得到用戶密碼,從而達到訪問敏感信息的目的。
(3)路由攻擊
攻擊者可通過攻擊路由器,更改路由設置,使得路由器不能正常轉發用戶請求,從而使得用戶無法訪問外網。或向路由器發送一些經過精心修改的數據包使得路由器停止響應,斷開網絡連接。
三、消防信息化建設中解決網絡安全問題的對策
3.1規范管理流程
網絡安全工作是信息化工作中的一個方面,信息化工作與規范化工作的根本目的一樣,就是要提高工作效率,只不過改變了規范化的手段。因此,在實行信息化的過程中,管理有著比技術更重要的作用,只有優化管理過程、強化管理基礎、細化管理流程、簡化管理冗余環節、提高管理效率,才能在達到信息化目的的同時,完善網絡安全建設。
3.2構建管理支持層
信息化是一項系統性工程,其實施自始至終需要單位最高層領導的重視和支持,包括對工作流程再造的支持、對協調各部門統一開展工作的支持、對軟件普及和培訓的支持。在實際工作中,應當建一個“信息化建設領導小組”,由各部門部長擔任成員,下設具體辦事部門,具體負責網絡建設和信息安全工作,這是一種較理想的做法。但要真正發揮其作用,促使信息工作的順利開展,不僅需要領導的重視,更重要的是需要負責人有能力充分協調與溝通各業務部門開展工作,更要與其他部門負責人有良好的協調配合關系。
3.3制定網絡安全管理制度
加強計算機網絡安全管理的法規建設,建立、健全各項管理制度是確保計算機網絡安全必不可少的措施。如制定人員管理制度,加強人員審查;組織管理上,避免單獨作業,操作與設計分離等。
3.4采取有效的安全技術措施
1前言
如果說納米技術使新材料的研究起到了革命性飛躍,那么也可以說性能化設計方法將開創消防科技的新局面。
消防設計目前有兩種設計思想,一種是傳統的“處方式設計方法”,其基于場所類型進行設計考慮;另一種是“性能化設計方法”,它立足于危害分析及火災假想,對于解決超越法規或現行法規無法解決的復雜建筑的消防設計具有很大意義。
由于性能化防火設計的方法與傳統的設計方法相比具有許多優越性,所以很快成為建筑防火的一種新理念,并將發展成為建筑防火技術領域里一個全球性發展潮流,受到許多發達國家和發展中國家的高度重視,得到越來越廣泛的應用。
2性能化消防設計的概念
性能化消防設計是建立在消防安全工程學基礎上的一種新的建筑防火設計方法,它運用消防安全工程學的原理與方法,根據建筑物的結構、用途和內部可燃物等方面的具體情況,由設計者根據建筑的各個不同空間條件、功能條件及其它相關條件,自由選擇為達到消防安全目的而應采取的各種防火措施,并將其有機地組合起來,構成該建筑物的總體防火安全設計方案,然后用已開發出的工程學方法,對建筑的火災危險性和危害性進行定量的預測和評估,從而得到最優化的防火設計方案,為建筑結構提供最合理的防火保護。
與“處方式”設計相比較,性能化設計方案更關注是否能夠實現“保證人員疏散和滅火救援不受火災煙氣影響”這一“目的”,而不是拘泥于滿足規范要求的最低排煙量。性能化的消防設計方案通過科學的論證,能夠提供比之處方式的消防規范更為安全的設計表現效果,比較起來,性能化設計方案具有設計成本有效性,設計選擇多樣性及設計效果更為優化性的特點。
性能化消防設計的兩個關鍵點,第一是確認危害,第二是明確設計目標。具體來說,它針對建筑物的特點,建筑物內人員特點,建筑物內部操作方式,建筑物外部特征,消防滅火組織特點等。從而針對每種危害或者每個設計區域選擇設計方法及評估方法。這種設計方法突破了傳統設計針對建筑物結構類型、相應的層高及面積的限制,同時提供了更加靈活而有效的設計選擇性。
性能化消防設計包括確立消防安全目標,建立可量化的性能要求,分析建筑物及內部情況,設定性能設計指標,建立火災場景和設計火災,選擇工程分析計算方法和工具,對設計方案進行安全評估,制定設計方案并編寫設計報告等步驟。在設計過程中,需要對建筑物可能發生的火災進行量化分析,并對典型火災場景下火災及煙氣的發展蔓延過程進行模擬計算,因此計算的工作量以及各類基礎數據的需要量非常大,往往需要采用計算機火災模擬軟件等分析和計算工具。
3性能化消防設計的流程
性能化設計利用火災科學和消防安全工程建立設計指標,評估設計方案;并利用火災危害分析和火災風險評估建立從總體目標和功能目標到火災場景等領域內所需要的參數。性能化的消防安全設計是一種可以對諸如非工程參數(如人在火災中的行為和反應)進行定義的工程過程。
4建筑物性能化消防設計的內容
建筑物的性能化消防設計主要包括兩個方面的設計內容:一是保證建筑內人員安全疏散的性能設計,二是保證建筑構件耐火的性能設計。
人員安全疏散的性能設計是從建筑內人員安全方面進行考慮的,通過綜合考慮各種火災因素對人員逃生的影響,采用性能化的設計方法來保證建筑物內人員的火災安全性,從而防止人員傷亡。其性能化的設計準則是:煙層下降高度和煙氣濃度達到人不能忍耐的時間大于人員安全疏散所需的時間。
構件耐火的性能化設計是從建筑物的穩定性方面進行考慮的,通過分析建筑構件在火災中的反應,采用性能化的設計方法來保證建筑物結構的火災穩定性,從而防止建筑物的倒塌。其性能化設計準則是:火災持續時間小于構件的耐火時間。
5國內外性能化設計應用概況
自20世紀80年代英國提出了“以性能為基礎的消防安全設計方法”(performance——basedfiresafety
design
method,以下簡稱性能化防火設計)的概念以來,日本、澳大利亞、美國、加拿大、新西蘭以及北歐等發達國家政府先后投入大量研究經費積極開展了消防性能化設計技術和方法的研究,南非、埃及、巴西等發展中國家也都紛紛開展了這方面研究工作。世界各國都在積極推行性能化設計方法的應用,并取得了巨大成就。
英國于1985年頒布了第一部性能化防火規范,包括防火規范的性能化修改,新規范規定“必須建造一座安全的建筑”,但不詳細確定應如何實現這一目標。
新西蘭1991年的建筑法案對建筑監督立法體系進了徹底調整,于1992年了性能化的《新西蘭建筑規范》,新規范中保留了處方式的要求,并作為可接受的設計方法,于1993年強制執行。1993~1998年,繼續開展了“消防安全性能評估方法的研究”,制定了性能化建筑消防安全框架;其中功能要求包括防止火災的發生、安全疏散措施、防止倒塌、消防基礎設施和通道要求以及防止火災相互蔓延五部分。
瑞典于1994年了新的包含有性能化設計內容的建筑防火設計規范。
澳大利亞于1996年頒布了性能化防火設計規范的《澳大利亞建筑設計規范》(《BuildingCodeof
Australia》,簡稱"BCA"),并自1997年7月1日起,在各州政府陸續推行。
巴西于1999年頒布了新的《鋼結構防火設計》和《對建筑構件耐火極限的要求》兩部標準。這是南美首次制定的建筑標準,由SaoPaulo大學、Mi—nasGerais大學和OuroPreto大學編制。標準中引入了如時間計算方法與風險評估方法以及其他消防安全工程設計方法等性能化的新概念,允許建筑物的火災安全根據其火災荷載、建筑物高度、建筑總面積以及滅火設備的安裝與否等條件確定,而對建筑物的耐火等級不做要求。
日本政府于1998年6月對《建筑基準法》進行了修訂,引入了一些有關性能化設計的內容,并于2000年6月施行;另外,還于2003年8月開始對《消防法》進行修訂,計劃于2005年施行。
加拿大于2001年了性能化的建筑規范和防火規范,其要求將以不同層次的目標形式表述。
美國也于2001年了《國際建筑性能規范》和《國際防火性能規范》。
目前,已有不少于13個國家(澳大利亞、加拿大、芬蘭、法國、英國、日本、荷蘭、新西蘭、挪威、波蘭、西班牙、瑞典和美國)采用或積極發展性能化規范和基于規范結構形式下建筑防火設計方法,并取得了一定成果。中國也正在加緊性能化設計方法的研究和性能化設計規范的制定。公安部所屬消防研究所承擔了幾項有關性能化設計的國家十五科技攻關課題,如公安部天津消防研究所承擔的“建筑物性能化防火設計技術導則”的研究和制定,公安部四川消防研究所承擔的“高層建筑性能化防火設計安全評估技術研究”等。
6推行性能化設計方法是一個逐步過程
盡管建筑物消防性能化設計方法有很多優點,作為性能化設計技術的基礎一“火災模型”在性能化設計中起著舉足輕重的作用,但它們作為一種新生事物,還不為人們所理解和接受,特別是建筑設計師和建筑管理部門的人員都不太了解這種新的設計方法。
有人曾對美國、中國香港和澳大利亞的建筑管理人員在對待性能化設計和處方式設計在能否保證建筑消防安全,以及火災模型是否足以支持性能化設計的態度進行了一個調查,并進行了比較。發現半數以上的管理人員認為性能化設計不能保證建筑的安全,三分之二以上的管理人員認為處方式設計能保證建筑的安全,以及三分之二以上的人認為火災模型不足以支持性能化設計。調查結果參見表1。
世界各國幾乎都存在著類似這樣的情況。在很長一段時期內,建筑設計師和建筑管理人員對性能化設計技術還存在一個從初步認識、深入了解到最終肯定的意識轉變過程。
另外,對于采用性能化方法設計的建筑,如何正確地評估其消防安全性方面也存在很多技術上的難題有待解決。
7展望
性能化消防設計已成為世界性建筑消防設計發展的必然趨勢,它的發展將大大促進消防安全設計的科學化、合理化和成本效益的最優化,并將產生十分重大的社會效益和經濟效益。盡管目前還有許多人不太理解和排斥使用它,但我們堅信隨著時間的推移,將會有
越來越多的人加入到肯定性能化設計方法的行列中來。據日本方面的統計,采用性能化方法進行消防設計的建筑正在逐年增加。
我國也應該加快性能化規范及配套技術的研究步伐,充分發揮性能設計的優越性。今后應從以下幾個方面人手,促進性能化設計技術的發展:
(1)加強各種火災預測模型和火災風險評估模型的研究,拓展性能化設計方法的應用空間。
(2)加強新材料、新技術研究,規范材料性能參數,建立和完善消防數據庫,提供準確的性能化指標,為性能化應用積累基礎性數據。
(3)深入研究火災規律、火災情況下建筑內人員逃生規律和構件變化規律,為各種火災模型的建立提供堅實的理論依據,并拓展計算機技術在消防中的應用。
(4)積極向建筑設計師和建筑管理人員介紹性能化設計方法,使他們從認識、理解并自覺接受性能化設計方法。
(5)出臺可操作性強的性能化設計指南,使建筑設計師能盡快地掌握性能化設計方法的使用。
(6)制定性能化消防設計規范,為性能化設計方法的應用提供法律依據。
參考文獻:
[1]田玉敏.論“性能化”的建筑防火設計方法.消防技術與產品信息,2003,(7).
[2]肖學鋒.發展性能化防火設計,迎接加入WTO的挑戰.消防科學與技術,2002,(5).
[3]SFPE性能化消防分析和設計工程指南.
[4]倪照鵬.國外以性能為基礎的建筑防火規范研究綜述.消防技術與產品信息,2001,(10).
[5]國外建筑物性能化設計研究譯文集.消防安全工程工作組編,2001.
[6]T.Tanaka.性能化消防案例設計標準和用于評估的FSE工具.國外建筑物性能化設計研究譯文集.消防安全工程工作組編.
《建筑設計防火規范》對于不同建筑設計中安全疏散的出口和距離有著明確的規定。然而對于大型建設而言,其總容納人數和規模都超過了規定的數量,需要疏散的人員數量較多,要對現行規范中的疏散時間、安全出口寬度和數量進行合理的調整。人員疏散也是建筑設計中消防性能化設計的一個難點,建筑內部出現疏散通道的匯合和分流,疏散通道線路和出口的分布比較復雜,使用的功能也比較多樣化。
1.2鋼屋架的結構防火
對于一些空間跨度較大的建筑來說,一般都使用鋼網架結構的屋頂設計。這就要求對屋頂的鋼網架結構進行一定的防火保護。也就是要求一級和二級的耐火等級的屋頂承重構件必須能夠保障1.5小時和1小時的耐火時間。而對鋼結構的耐火級別進行定義也會影響到建筑設計的消防性能。在空間跨度較大的建筑中,由于具有空間敞開、建筑物高大的特點,發生火災時屋頂很少受到火災的威脅。因此,在選擇鋼結構保護材料時要確定合適的保護時間。與此同時也要考慮到建筑的外觀設計,避免傳統的防火要求和防火保護措施對建筑物的整體外觀造成影響,也不要出現保護不足和過度保護的現象。
1.3排煙系統
《高層民用建筑設計防火規范》對于建筑物的中庭排煙量有著比較具體的計算方法設計,但是如果完全按照該方法進行計算,會出現排煙量過大的現象,不利于建筑物的施工和設計。因此建筑設計中的消防性能化設計在進行排煙系統的設計時要參照建筑設計的具體情況,對自然排煙口面積、排煙量和排煙設施的設置地點進行設計。
1.4發揮普通消防設施的作用
一些現代大型建筑的設計中由于消防監控的空間較大、頂棚的高度超過了普通探測儀器的使用高度,因此普通的消防設施很難發揮有效的作用。
2建筑設計中消防性能化的具體設計方法
2.1對人員安全疏散進行設計
在建筑設計中,要對人員安全疏散進行設計,就必須認真分析建筑物的特定功能、人員類型和人員荷載,并對火災緊急逃生時的人員疏散情景進行模擬和設計,對建筑物的疏散寬度、疏散出口等指標進行定量考察。在設計時可以通過疏散模型,對人員進入安全區域所需要的時間進行模擬和計算。以此來判定該建筑是否適合使用該疏散設計方案,并分析模擬的結果,搞清楚人員疏散過程中可能出現的滯留點的位置,以此為依據來對人員疏散方案進行有效的調整。可以采取增加疏散寬度或疏散出口數量等方法,既可以提高建筑空間設計的實用性和自由度,也可以使消防性能化設計的需求得到滿足。大型建筑物由于人員的密集程度較高,具有比較復雜的疏散線路,在設計時不僅要保障在火災環境中具有一個符合要求的安全疏散環境,還必須保障能夠在較短的時間內將建筑物中的人員疏散至室外開敞環境或地面。
2.2對屋頂鋼結構防火的設計
以消防性能化設計方法為依據,考察建筑物內的鋼結構,考察的重點在于鋼結構的性能變化,具體體現在彈性模量的變化和結構強度的變化。當火災發生時,隨著溫度的升高鋼結構的彈性模量和結構強度都會隨之降低,改變鋼結構的抗火承載能力。鋼結構在高溫環境下,受到的外荷載可能造成其所承受的內力大于鋼結構的抗火承載力。當出現以下任意一個條件時,說明鋼結構構件達到了抗火承載能力的極限狀態。(1)鋼結構的變形達到了不適于繼續承載的狀態;(2)鋼結構喪失了整體的穩定性;(3)鋼結構的受彎構件產生了足夠的塑性鉸,造成了結構的可變機構;(4)鋼結構的軸心受力構件截面出現屈服。在建筑設計的消防性能化設計中,要進行科學的鋼結構防火設計,在溫度要求、時間要求和受力要求三個要求中,鋼結構的防火設計必須滿足其中的一個,也就是將其中的一個作為鋼結構防火設計的判定標準。
2.3對防排煙系統的設計
在建筑設計中要進行相應的防排煙系統設計,主要的設計目的在于能夠安全地疏散人員。也就是當火災發生時,通過排煙口和通風口的設計,能夠避免建筑物內的人員被火災的煙氣所阻礙。一般情況下人員可能停留的最高高度為1.8m,建筑的防排煙設計要保障煙塵高度高于1.8m,則可以有效地保障建筑物內的人員安全。在消防性能化設計中,對防排煙性能化的設計主要是以涉及區域內可能發生的火災規模為根據來對煙層高度等參數進行確定,從而確定合適的排煙口位置和必須的排煙量。
2.4設計火災探測系統
如果在建筑設計中,常規的防火設施無法發揮有效的作用,可以根據建筑物的具體尺寸和空間結構來設計相應的滅火系統和火災探測系統。對于大空間場所而言,比較實用的火災報警探測器主要有空氣采樣探測器、雙波段火災探測器、紅外光束感煙探測器等,可以選擇的自動滅火設施主要有自動水炮系統和雨淋系統等。
3建筑防火分區中的性能化防火設計
我國的《建筑設計防火規范》《高層建筑設計防火規范》《人民防空工程設計防火規范》對于建筑防火分區中的消防性能化設計有著明確的規定。根據規定,低層民用建筑的地上部分如果具備了自動滅火系統,防火分區的面積可以達到5000m2。高層建筑的地上部分如果具備了自動滅火系統和火災自動報警系統,裝修材料為難燃燒材料或不燃燒材料,防火分區的最大面積可以達到4000m2,一般為展覽廳或營業廳。對于人防工程,展覽廳和高級裝修營業廳如果具備了自動滅火系統和自動報警系統,分區的最大面積可以達到2000m2。然而在具體的建筑設計中,一些會展倉庫、倉庫式超市、商場、大型展覽館的面積往往要達到上萬甚至十多萬m2。而且要求上下通透、物流通暢、交通便利,如果按照規定,使用防火系統將其空間進行分割,必然會影響建筑的空間藝術和功能。因此通過性能化設計,可以采取“主動、動態”的建筑防火分區辦法,也就是建立數學模型,通過火災動力學原理來計算火災發展和蔓延的各種因素,例如燃燒空間的狀態、起火點的環境、氧氣的供給、可燃物的種類和數量等,從而對防火措施的具體作用進行證明,科學地劃分相應的防火分區。這樣一來不僅能對火源進行控制,也能夠根據建筑物的規模、性質和功能的不同,以及空間、時間、物流和人流的差異來科學地布置消防設施,更好地發揮消防措施的作用,也減少了對空間的實體分隔數量。
水利水電工程在消防設計中應遵循國家基本建設方針、政策,消防設施的投入既要滿足有關規程規范的要求,又要與我國當前的財力相適應,貫徹“預防為主、防消結合”的消防工作方針。多數水利水電工程處于遠離城市的偏僻地區,工程自身的火災發生幾率及危險程度相對較低,而火災可能造成的財產損失較大。為此,在消防設計時應按照“自防自救為主,外援為輔”的原則,針對工程各消防對象從防火、監測、報警、控制、滅火、排煙、救生等幾個方面進行設計,采取積極可靠的措施預防火災的發生,一旦發生火災則盡量限制火災的范圍,盡快撲滅,減少人員傷亡和財產損失。
水利水電工程防火設計主要遵循《水利水電工程設計防火規范》(SDJ278-90)(以下簡稱《規范》),在執行過程中感覺到有不少具體問題尚待探討,本文就消防電氣設計相關問題提出建議,與同行交流。
1《規范》缺乏針對性
水利水電工程消防設計政策性強,政府主管部門把關嚴,但相對而言,設計規范要求不完善,現有《規范》僅用很小的篇幅對消防電氣設計提出要求,共含3節9條,過于籠統,缺乏針對性,在水利水電工程設計、施工、安裝和驗收工作中缺乏指導意義。由于水利水電工程具體情況千差萬別,一個規范不可能包含全部要求,故在實際工程消防設計中還需參照其他相應規范,如《建筑設計防火規范》、《建筑內部裝修設計防火規范》、《自動噴水滅火系統施工及驗收規范》、《火災自動報警設計規范》、《水噴霧滅火系統設計規范》、《氣體滅火系統施工及驗收規范》、《建筑滅火器配置設計規范》、《電力設備典型消防規程》、《水力發電廠采暖通風和空氣調節設計規范》等,以力求做到安全、可靠、實用。
2《規范》個別條文待商榷
《規范》第11.3.2條規定:火災自動報警系統的電氣連線,應選用屏蔽型電纜。其條文說明解釋為:“火災報警電氣連接線在與其它電氣線路一起架設時,為避免電磁干擾,應采取屏蔽防護措施”。條文說明與正文要求的程度不一致,容易造成設計或驗收對此要求把握上的差異。對此項要求,我國其他防火規范均未明確提出。就目前火災自動報警系統設計中的電氣控制線路選用屏蔽型電纜應沒有問題,主要問題在于回路總線。現多數產品為智能型,回路總線就
是計算機網絡通信線,對于通信線路的要求歐美標準略有不同,美國標準傾向非屏蔽雙絞線,歐洲標準傾向屏蔽通信線。如美國霍尼維爾XLS1000系統要求:“回路總線可選非屏蔽雙絞線(AADC卡),非屏蔽非雙絞線(DSDC卡),穿金屬管布線或封閉式線槽保護方式布線”。在實際工程設計中,是采用屏蔽型電纜還是非屏蔽雙絞線,應該根據產品要求確定。
《規范》第11.3.2條還規定:對油浸式主變壓器和水輪發電機,應選用抗工頻電磁場的探測器。目前火災報警裝置制造商生產的火災探測器基本上以適應民用建筑為主,很少見門為某特殊需要開發的定型火災探測器,還沒有專用抗工頻電磁場的探測器。在水利水電工程設計中只能選用通常的探測器,實際運行中并未發生因工頻電磁場干擾造成的誤報。
3關于疏散指示標志
《規范》第11.1.3條規定:火災事故照明、疏散指示標志,可采用蓄電池、應急燈作備用電源,但連續供電時間不應少于20min。第11.2.2條規定:疏散用的事故照明其最低照度,不應低于0.5Lux。這些規定對于民用建筑適用,而對于水利水電工程尤其是大型水利水電工程來說就未必可行了。近幾年來建設的水利水電工程大都按“無人值班(少
人值守)”的模式設計,工程范圍大,建筑物體積大,而運行人員很少。如果按《規范》要求設置疏散指示標志,一是很難布置,二是設備投資過大,三是難以真正起到作用。
疏散指示標志的合理設置,對人員安全疏散具有重要作用,國內外實際應用表明,在疏散走道和主要疏散線路的地面上或靠近地面的墻上設置發光疏散指示標志,對安全疏散起到很好的作用,可以更有效地幫助人們在濃煙彌漫的情況下,及時識別疏散位置和方向,迅速沿發光疏散指示標志順利疏散,有效降低傷亡事故的發生。發達國家對于重要的場所,特別是大型公共場所、地下建筑物,一般設有在黑暗環境中能夠自發光的疏散指示,即采用蓄光型消防安全逃生指示線加上必要的逃生工具組成的緊急逃生系統。在水利水電工程中可推廣應用類似緊急逃生系統,當常規的安全標志不能工作時,蓄光型消防逃生指示線和蓄光型消防安全標志牌仍可工作,以保證人身安全。超級秘書網
4關于火災報警電話
《規范》中沒有火災報警電話的相應規定,在工程驗收中,消防主管部門往往按照其他防火規范對水利水電工程提出同樣的要求。與疏散指示標志的設置一樣,按照一般民用建筑火警電話設置要求,水利水電工程難以起到應有的作用。大多數水利水電工程,尤其是水力發電廠,值班人員集
1.2選擇和分析解決方案查找TRIZ矛盾矩陣,得出消防炮升降塔裝置的阿奇舒勒矩陣如表1所示,共有9個發明原理。結合實踐需要,推薦的消防炮升降塔裝置的發明原理序號共4個,對應的發明原理為10-預先作用、15-動態化、24-中介物、29-氣壓或液壓結構。10-預先作用:在操作開始前使物體局部或全部產生所需變化;預先對物體進行特殊安排,使其在時間上有準備或已處于易操作的位置。采用的油缸活塞桿是中空結構,并在活塞桿內部設有一根內導管(中空結構),在活塞桿與內導管之間還設有一根外導管。在油箱上方設有空氣濾清劑,并在其他方位設有液位控制器,溫度繼電器,液位液溫計。15-動態化:使物體或其環境在操作的每一個階段自動調整,以達到優化的性能;把物體分為幾部分,各部分之間可以相對改變位置,將不動的物體改變為可動的或具自適應性。在油缸完全伸出、縮進處裝有限位開關。24-中介物,使用中介物傳遞某一物體或某一中間過程,或將一個容易移動的物體與另一個物體暫時結合,采用液壓油實現傳動。29-氣壓或液壓結構:將物體固體零部件用氣動或液壓零部件代替。在創新設計中,采用液壓傳動代替原機械傳動實現升降塔的升降動作,采用電磁換向閥換向實現消防炮的升降。
1.3具體解決方案通過以上創新原理的分析,以此為創新設計思路,得出最終的消防炮升降塔裝置創新設計方案:采用液壓傳動機構,包括電動機、接近開關,油缸,設置在油缸內部的活塞及活塞桿(中空結構)、油缸回路,鋼筒端部設置的法蘭,油箱,泵組,控制閥組。油箱、泵組、控制閥組通過管路連接形成動力站,如圖1所示。油箱上方設有空氣濾清劑,并在其它方位設有液位控制器、溫度繼電器、液位液溫計。油缸活塞桿為中空結構,并在活塞桿內部設有一根耐腐蝕內導管(中空結構),并在油缸完全伸出、縮進處裝有限位開關,在活塞桿與內導管之間還設有一根外導管。油缸如圖2所示。在液壓吸油管處設有單向閥。控制閥組設有兩個油路,分別連通油缸的有桿腔和無桿腔,每個油路進油端設有單向閥和溢流閥,單向閥流出口連接一個換向閥,通過控制換向閥從而控制油流入的是有桿腔還是無桿腔,換向閥流出口分別設有平衡閥,油通過平衡閥大部分流入有桿腔(無桿腔)、少許壓力油通過平衡閥作用將無桿腔(有桿腔)回路打開,從而使無桿腔(有桿腔)中油流回油箱,形成鎖緊回路,在平衡閥流出口并聯一個溢流閥。消防炮升降塔裝置的液壓系統原理圖如圖3所示。
一、前言
如果說納米技術使新材料的研究起到了革命性飛躍,那么也可以說性能化設計方法將開創消防科技的新局面。
消防設計目前有兩種設計思想,一種是傳統的“處方式設計方法”,其基于場所類型進行設計考慮;另一種是“性能化設計方法”,它立足于危害分析及火災假想,對于解決超越法規或現行法規無法解決的復雜建筑的消防設計具有很大意義。
由于性能化防火設計的方法與傳統的設計方法相比具有許多優越性,所以很快成為建筑防火的一種新理念,并將發展成為建筑防火技術領域里一個全球性發展潮流,受到許多發達國家和發展中國家的高度重視,得到越來越廣泛的應用。
二、性能化消防設計的概念
性能化消防設計是建立在消防安全工程學基礎上的一種新的建筑防火設計方法,它運用消防安全工程學的原理與方法,根據建筑物的結構、用途和內部可燃物等方面的具體情況,由設計者根據建筑的各個不同空間條件、功能條件及其它相關條件,自由選擇為達到消防安全目的而應采取的各種防火措施,并將其有機地組合起來,構成該建筑物的總體防火安全設計方案,然后用已開發出的工程學方法,對建筑的火災危險性和危害性進行定量的預測和評估,從而得到最優化的防火設計方案,為建筑結構提供最合理的防火保護。
與“處方式”設計相比較,性能化設計方案更關注是否能夠實現“保證人員疏散和滅火救援不受火災煙氣影響”這一“目的”,而不是拘泥于滿足規范要求的最低排煙量。性能化的消防設計方案通過科學的論證,能夠提供比之處方式的消防規范更為安全的設計表現效果,比較起來,性能化設計方案具有設計成本有效性,設計選擇多樣性及設計效果更為優化性的特點。
性能化消防設計的兩個關鍵點,第一是確認危害,第二是明確設計目標。具體來說,它針對建筑物的特點,建筑物內人員特點,建筑物內部操作方式,建筑物外部特征,消防滅火組織特點等。從而針對每種危害或者每個設計區域選擇設計方法及評估方法。這種設計方法突破了傳統設計針對建筑物結構類型、相應的層高及面積的限制,同時提供了更加靈活而有效的設計選擇性。
性能化消防設計包括確立消防安全目標,建立可量化的性能要求,分析建筑物及內部情況,設定性能設計指標,建立火災場景和設計火災,選擇工程分析計算方法和工具,對設計方案進行安全評估,制定設計方案并編寫設計報告等步驟。在設計過程中,需要對建筑物可能發生的火災進行量化分析,并對典型火災場景下火災及煙氣的發展蔓延過程進行模擬計算,因此計算的工作量以及各類基礎數據的需要量非常大,往往需要采用計算機火災模擬軟件等分析和計算工具。
三、性能化消防設計的流程
性能化設計利用火災科學和消防安全工程建立設計指標,評估設計方案;并利用火災危害分析和火災風險評估建立從總體目標和功能目標到火災場景等領域內所需要的參數。性能化的消防安全設計是一種可以對諸如非工程參數(如人在火災中的行為和反應)進行定義的工程過程。
四、建筑物性能化消防設計的內容
建筑物的性能化消防設計主要包括兩個方面的設計內容:一是保證建筑內人員安全疏散的性能設計,二是保證建筑構件耐火的性能設計。
人員安全疏散的性能設計是從建筑內人員安全方面進行考慮的,通過綜合考慮各種火災因素對人員逃生的影響,采用性能化的設計方法來保證建筑物內人員的火災安全性,從而防止人員傷亡。其性能化的設計準則是:煙層下降高度和煙氣濃度達到人不能忍耐的時間大于人員安全疏散所需的時間。
構件耐火的性能化設計是從建筑物的穩定性方面進行考慮的,通過分析建筑構件在火災中的反應,采用性能化的設計方法來保證建筑物結構的火災穩定性,從而防止建筑物的倒塌。其性能化設計準則是:火災持續時間小于構件的耐火時間。
五、國內外性能化設計應用概況
自20世紀80年代英國提出了“以性能為基礎的消防安全設計方法”(performance——basedfiresafetydesignmethod,以下簡稱性能化防火設計)的概念以來,日本、澳大利亞、美國、加拿大、新西蘭以及北歐等發達國家政府先后投入大量研究經費積極開展了消防性能化設計技術和方法的研究,南非、埃及、巴西等發展中國家也都紛紛開展了這方面研究工作。世界各國都在積極推行性能化設計方法的應用,并取得了巨大成就。
英國于1985年頒布了第一部性能化防火規范,包括防火規范的性能化修改,新規范規定“必須建造一座安全的建筑”,但不詳細確定應如何實現這一目標。
新西蘭1991年的建筑法案對建筑監督立法體系進了徹底調整,于1992年了性能化的《新西蘭建筑規范》,新規范中保留了處方式的要求,并作為可接受的設計方法,于1993年強制執行。1993~1998年,繼續開展了“消防安全性能評估方法的研究”,制定了性能化建筑消防安全框架;其中功能要求包括防止火災的發生、安全疏散措施、防止倒塌、消防基礎設施和通道要求以及防止火災相互蔓延五部分。
瑞典于1994年了新的包含有性能化設計內容的建筑防火設計規范。
澳大利亞于1996年頒布了性能化防火設計規范的《澳大利亞建筑設計規范(《BuildingCodeofAustralia》,簡稱"BCA"),并自1997年7月1日起,在各州政府陸續推行。
巴西于1999年頒布了新的《鋼結構防火設計》和《對建筑構件耐火極限的要求》兩部標準。這是南美首次制定的建筑標準,由SaoPaulo大學、Mi—nasGerais大學和OuroPreto大學編制。標準中引入了如時間計算方法與風險評估方法以及其他消防安全工程設計方法等性能化的新概念,允許建筑物的火災安全根據其火災荷載、建筑物高度、建筑總面積以及滅火設備的安裝與否等條件確定,而對建筑物的耐火等級不做要求。
日本政府于1998年6月對《建筑基準法》進行了修訂,引入了一些有關性能化設計的內容,并于2000年6月施行;另外,還于2003年8月開始對《消防法》進行修訂,計劃于2005年施行。
加拿大于2001年了性能化的建筑規范和防火規范,其要求將以不同層次的目標形式表述。
美國也于2001年了《國際建筑性能規范》和《國際防火性能規范》。
目前,已有不少于13個國家(澳大利亞、加拿大、芬蘭、法國、英國、日本、荷蘭、新西蘭、挪威、波蘭、西班牙、瑞典和美國)采用或積極發展性能化規范和基于規范結構形式下建筑防火設計方法,并取得了一定成果。中國也正在加緊性能化設計方法的研究和性能化設計規范的制定。公安部所屬消防研究所承擔了幾項有關性能化設計的國家十五科技攻關課題,如公安部天津消防研究所承擔的“建筑物性能化防火設計技術導則”的研究和制定,公安部四川消防研究所承擔的“高層建筑性能化防火設計安全評估技術研究”等。
六、推行性能化設計方法是一個逐步過程
盡管建筑物消防性能化設計方法有很多優點,作為性能化設計技術的基礎一“火災模型”在性能化設計中起著舉足輕重的作用,但它們作為一種新生事物,還不為人們所理解和接受,特別是建筑設計師和建筑管理部門的人員都不太了解這種新的設計方法。
有人曾對美國、中國香港和澳大利亞的建筑管理人員在對待性能化設計和處方式設計在能否保證建筑消防安全,以及火災模型是否足以支持性能化設計的態度進行了一個調查,并進行了比較。發現半數以上的管理人員認為性能化設計不能保證建筑的安全,三分之二以上的管理人員認為處方式設計能保證建筑的安全,以及三分之二以上的人認為火災模型不足以支持性能化設計。
世界各國幾乎都存在著類似這樣的情況。在很長一段時期內,建筑設計師和建筑管理人員對性能化設計技術還存在一個從初步認識、深入了解到最終肯定的意識轉變過程。
另外,對于采用性能化方法設計的建筑,如何正確地評估其消防安全性方面也存在很多技術上的難題有待解決。
七、展望
性能化消防設計已成為世界性建筑消防設計發展的必然趨勢,它的發展將大大促進消防安全設計的科學化、合理化和成本效益的最優化,并將產生十分重大的社會效益和經濟效益。盡管目前還有許多人不太理解和排斥使用它,但我們堅信隨著時間的推移,將會有越來越多的人加入到肯定性能化設計方法的行列中來。據日本方面的統計,采用性能化方法進行消防設計的建筑正在逐年增加。
我國也應該加快性能化規范及配套技術的研究步伐,充分發揮性能設計的優越性。今后應從以下幾個方面人手,促進性能化設計技術的發展:
(1)加強各種火災預測模型和火災風險評估模型的研究,拓展性能化設計方法的應用空間。
(2)加強新材料、新技術研究,規范材料性能參數,建立和完善消防數據庫,提供準確的性能化指標,為性能化應用積累基礎性數據。
(3)深入研究火災規律、火災情況下建筑內人員逃生規律和構件變化規律,為各種火災模型的建立提供堅實的理論依據,并拓展計算機技術在消防中的應用。
(4)積極向建筑設計師和建筑管理人員介紹性能化設計方法,使他們從認識、理解并自覺接受性能化設計方法。
(5)出臺可操作性強的性能化設計指南,使建筑設計師能盡快地掌握性能化設計方法的使用。
(6)制定性能化消防設計規范,為性能化設計方法的應用提供法律依據。
參考文獻:
[1]田玉敏.論“性能化”的建筑防火設計方法.消防技術與產品信息,2003,(7).
[2]肖學鋒.發展性能化防火設計,迎接加入WTO的挑戰.消防科學與技術,2002,(5).
[3]SFPE性能化消防分析和設計工程指南.
[4]倪照鵬.國外以性能為基礎的建筑防火規范研究綜述.消防技術與產品信息,2001,(10).
[5]國外建筑物性能化設計研究譯文集.消防安全工程工作組編,2001.
[6]T.Tanaka.性能化消防案例設計標準和用于評估的FSE工具.國外建筑物性能化設計研究譯文集.消防安全工程工作組編.
1前言
如果說納米技術使新材料的研究起到了革命性飛躍,那么也可以說性能化設計方法將開創消防科技的新局面。
消防設計目前有兩種設計思想,一種是傳統的“處方式設計方法”,其基于場所類型進行設計考慮;另一種是“性能化設計方法”,它立足于危害分析及火災假想,對于解決超越法規或現行法規無法解決的復雜建筑的消防設計具有很大意義。
由于性能化防火設計的方法與傳統的設計方法相比具有許多優越性,所以很快成為建筑防火的一種新理念,并將發展成為建筑防火技術領域里一個全球性發展潮流,受到許多發達國家和發展中國家的高度重視,得到越來越廣泛的應用。
2性能化消防設計的概念
性能化消防設計是建立在消防安全工程學基礎上的一種新的建筑防火設計方法,它運用消防安全工程學的原理與方法,根據建筑物的結構、用途和內部可燃物等方面的具體情況,由設計者根據建筑的各個不同空間條件、功能條件及其它相關條件,自由選擇為達到消防安全目的而應采取的各種防火措施,并將其有機地組合起來,構成該建筑物的總體防火安全設計方案,然后用已開發出的工程學方法,對建筑的火災危險性和危害性進行定量的預測和評估,從而得到最優化的防火設計方案,為建筑結構提供最合理的防火保護。
與“處方式”設計相比較,性能化設計方案更關注是否能夠實現“保證人員疏散和滅火救援不受火災煙氣影響”這一“目的”,而不是拘泥于滿足規范要求的最低排煙量。性能化的消防設計方案通過科學的論證,能夠提供比之處方式的消防規范更為安全的設計表現效果,比較起來,性能化設計方案具有設計成本有效性,設計選擇多樣性及設計效果更為優化性的特點。
性能化消防設計的兩個關鍵點,第一是確認危害,第二是明確設計目標。具體來說,它針對建筑物的特點,建筑物內人員特點,建筑物內部操作方式,建筑物外部特征,消防滅火組織特點等。從而針對每種危害或者每個設計區域選擇設計方法及評估方法。這種設計方法突破了傳統設計針對建筑物結構類型、相應的層高及面積的限制,同時提供了更加靈活而有效的設計選擇性。
性能化消防設計包括確立消防安全目標,建立可量化的性能要求,分析建筑物及內部情況,設定性能設計指標,建立火災場景和設計火災,選擇工程分析計算方法和工具,對設計方案進行安全評估,制定設計方案并編寫設計報告等步驟。在設計過程中,需要對建筑物可能發生的火災進行量化分析,并對典型火災場景下火災及煙氣的發展蔓延過程進行模擬計算,因此計算的工作量以及各類基礎數據的需要量非常大,往往需要采用計算機火災模擬軟件等分析和計算工具。
3性能化消防設計的流程
性能化設計利用火災科學和消防安全工程建立設計指標,評估設計方案;并利用火災危害分析和火災風險評估建立從總體目標和功能目標到火災場景等領域內所需要的參數。性能化的消防安全設計是一種可以對諸如非工程參數(如人在火災中的行為和反應)進行定義的工程過程。
4建筑物性能化消防設計的內容
建筑物的性能化消防設計主要包括兩個方面的設計內容:一是保證建筑內人員安全疏散的性能設計,二是保證建筑構件耐火的性能設計。
人員安全疏散的性能設計是從建筑內人員安全方面進行考慮的,通過綜合考慮各種火災因素對人員逃生的影響,采用性能化的設計方法來保證建筑物內人員的火災安全性,從而防止人員傷亡。其性能化的設計準則是:煙層下降高度和煙氣濃度達到人不能忍耐的時間大于人員安全疏散所需的時間。
構件耐火的性能化設計是從建筑物的穩定性方面進行考慮的,通過分析建筑構件在火災中的反應,采用性能化的設計方法來保證建筑物結構的火災穩定性,從而防止建筑物的倒塌。其性能化設計準則是:火災持續時間小于構件的耐火時間。
5國內外性能化設計應用概況
自20世紀80年代英國提出了“以性能為基礎的消防安全設計方法”(performance——basedfiresafety
design
method,以下簡稱性能化防火設計)的概念以來,日本、澳大利亞、美國、加拿大、新西蘭以及北歐等發達國家政府先后投入大量研究經費積極開展了消防性能化設計技術和方法的研究,南非、埃及、巴西等發展中國家也都紛紛開展了這方面研究工作。世界各國都在積極推行性能化設計方法的應用,并取得了巨大成就。
英國于1985年頒布了第一部性能化防火規范,包括防火規范的性能化修改,新規范規定“必須建造一座安全的建筑”,但不詳細確定應如何實現這一目標。
新西蘭1991年的建筑法案對建筑監督立法體系進了徹底調整,于1992年了性能化的《新西蘭建筑規范》,新規范中保留了處方式的要求,并作為可接受的設計方法,于1993年強制執行。1993~1998年,繼續開展了“消防安全性能評估方法的研究”,制定了性能化建筑消防安全框架;其中功能要求包括防止火災的發生、安全疏散措施、防止倒塌、消防基礎設施和通道要求以及防止火災相互蔓延五部分。
瑞典于1994年了新的包含有性能化設計內容的建筑防火設計規范。
澳大利亞于1996年頒布了性能化防火設計規范的《澳大利亞建筑設計規范》(《BuildingCodeof
Australia》,簡稱"BCA"),并自1997年7月1日起,在各州政府陸續推行。
巴西于1999年頒布了新的《鋼結構防火設計》和《對建筑構件耐火極限的要求》兩部標準。這是南美首次制定的建筑標準,由SaoPaulo大學、Mi—nasGerais大學和OuroPreto大學編制。標準中引入了如時間計算方法與風險評估方法以及其他消防安全工程設計方法等性能化的新概念,允許建筑物的火災安全根據其火災荷載、建筑物高度、建筑總面積以及滅火設備的安裝與否等條件確定,而對建筑物的耐火等級不做要求。
日本政府于1998年6月對《建筑基準法》進行了修訂,引入了一些有關性能化設計的內容,并于2000年6月施行;另外,還于2003年8月開始對《消防法》進行修訂,計劃于2005年施行。
加拿大于2001年了性能化的建筑規范和防火規范,其要求將以不同層次的目標形式表述。
美國也于2001年了《國際建筑性能規范》和《國際防火性能規范》。
目前,已有不少于13個國家(澳大利亞、加拿大、芬蘭、法國、英國、日本、荷蘭、新西蘭、挪威、波蘭、西班牙、瑞典和美國)采用或積極發展性能化規范和基于規范結構形式下建筑防火設計方法,并取得了一定成果。中國也正在加緊性能化設計方法的研究和性能化設計規范的制定。公安部所屬消防研究所承擔了幾項有關性能化設計的國家十五科技攻關課題,如公安部天津消防研究所承擔的“建筑物性能化防火設計技術導則”的研究和制定,公安部四川消防研究所承擔的“高層建筑性能化防火設計安全評估技術研究”等。
6推行性能化設計方法是一個逐步過程
盡管建筑物消防性能化設計方法有很多優點,作為性能化設計技術的基礎一“火災模型”在性能化設計中起著舉足輕重的作用,但它們作為一種新生事物,還不為人們所理解和接受,特別是建筑設計師和建筑管理部門的人員都不太了解這種新的設計方法。
有人曾對美國、中國香港和澳大利亞的建筑管理人員在對待性能化設計和處方式設計在能否保證建筑消防安全,以及火災模型是否足以支持性能化設計的態度進行了一個調查,并進行了比較。發現半數以上的管理人員認為性能化設計不能保證建筑的安全,三分之二以上的管理人員認為處方式設計能保證建筑的安全,以及三分之二以上的人認為火災模型不足以支持性能化設計。調查結果參見表1。
世界各國幾乎都存在著類似這樣的情況。在很長一段時期內,建筑設計師和建筑管理人員對性能化設計技術還存在一個從初步認識、深入了解到最終肯定的意識轉變過程。
另外,對于采用性能化方法設計的建筑,如何正確地評估其消防安全性方面也存在很多技術上的難題有待解決。
7展望
性能化消防設計已成為世界性建筑消防設計發展的必然趨勢,它的發展將大大促進消防安全設計的科學化、合理化和成本效益的最優化,并將產生十分重大的社會效益和經濟效益。盡管目前還有許多人不太理解和排斥使用它,但我們堅信隨著時間的推移,將會有
越來越多的人加入到肯定性能化設計方法的行列中來。據日本方面的統計,采用性能化方法進行消防設計的建筑正在逐年增加。
我國也應該加快性能化規范及配套技術的研究步伐,充分發揮性能設計的優越性。今后應從以下幾個方面人手,促進性能化設計技術的發展:
(1)加強各種火災預測模型和火災風險評估模型的研究,拓展性能化設計方法的應用空間。
(2)加強新材料、新技術研究,規范材料性能參數,建立和完善消防數據庫,提供準確的性能化指標,為性能化應用積累基礎性數據。
(3)深入研究火災規律、火災情況下建筑內人員逃生規律和構件變化規律,為各種火災模型的建立提供堅實的理論依據,并拓展計算機技術在消防中的應用。
(4)積極向建筑設計師和建筑管理人員介紹性能化設計方法,使他們從認識、理解并自覺接受性能化設計方法。
(5)出臺可操作性強的性能化設計指南,使建筑設計師能盡快地掌握性能化設計方法的使用。
(6)制定性能化消防設計規范,為性能化設計方法的應用提供法律依據。
參考文獻:
[1]田玉敏.論“性能化”的建筑防火設計方法.消防技術與產品信息,2003,(7).
[2]肖學鋒.發展性能化防火設計,迎接加入WTO的挑戰.消防科學與技術,2002,(5).
[3]SFPE性能化消防分析和設計工程指南.
[4]倪照鵬.國外以性能為基礎的建筑防火規范研究綜述.消防技術與產品信息,2001,(10).
[5]國外建筑物性能化設計研究譯文集.消防安全工程工作組編,2001.
[6]T.Tanaka.性能化消防案例設計標準和用于評估的FSE工具.國外建筑物性能化設計研究譯文集.消防安全工程工作組編.
作者:劉其杰 侯春源 王滿 單位:世源科技工程有限公司 北京市消防總隊經濟技術開發區支隊建審法制科
儲物高度≤3.7m的雜貨倉庫包括儲物高度:≤3.7m的Ⅰ類~Ⅳ類物品堆垛倉庫和貨架倉庫、≤3.7m的A類塑料倉庫、≤3.7m的雜貨輪胎倉庫、≤3.7m的卷紙倉庫、<3m的衛生紙倉庫、<1.8m的閑置木托盤倉庫、<1.2m的閑置塑料托盤倉庫。具體情況應根據物品分類、儲物高度、儲物方式、包裝材質、托盤材質等信息,確定倉庫的危險等級,再通過圖1確定作用面積和噴水強度。堆垛高度>3.7m的Ⅰ類~Ⅳ類物品堆垛倉庫此處Ⅰ類~Ⅳ類物品應符合下列要求:1)堆垛高度≤9.1m無包裝的實體、托盤或箱體堆垛。2)堆垛高度≤4.6m無包裝的擱架堆垛。3)堆垛高度≤4.6m帶包裝的實體、托盤、箱體或擱架堆垛。當采用普通溫度等級的噴頭時,應根據物品等級,在圖2中相應的曲線上選取一點確定作用面積和噴水強度。當采用高溫度等級的噴頭時,應根據物品等級,在圖3中相應的曲線上選取一點確定作用面積和噴水強度。確定噴水強度后,在作用面積不變的情況下,根據堆垛高度對噴水強度進行修正。堆垛高度≤7.62m的塑料和橡膠制品堆垛倉庫依據圖5對應NFPA中相應表格確定設置場所的噴水強度和作用面積。其他倉庫1)3.7m<儲物高度≤7.6m及>7.6m的Ⅰ類~Ⅳ類物品貨架倉庫。2)1.5m<儲物高度≤7.6m及>7.6m的塑料貨架倉庫。3)閑置托盤、橡膠輪胎、棉包及卷筒紙倉庫。NFPA13中詳細規定了吊頂噴頭及貨架噴頭的噴水強度、作用面積等參數,受篇幅限制,在此不做贅述。典型特殊危險場所1)冷卻塔。冷卻塔在安裝及維護工作中由于操作不當所引起的冷卻塔燃燒現象時有發生,為避免損失保險公司要求對冷卻塔進行保護。滿足以下三種方式之一,冷卻塔可不設置噴淋保護:a.選用FM認證的冷卻塔。b.相鄰冷卻塔的間距大于12m。c.當冷卻塔的間距不能滿足12m時,在每臺冷卻塔之間砌筑耐火時間≥1h的防火墻,防火墻高度應高于冷卻塔0.91m,寬度應寬于冷卻塔0.91m。逆流冷卻塔可采用濕式、干式、預作用或雨淋系統,嚴寒地區優先采用雨淋系統;橫流冷卻塔應采用雨淋系統。最小噴水強度:a.對于使用易燃填料和風扇甲板的逆流冷卻塔,應在風扇甲板下安裝噴頭,噴水強度≥20.4L/(min•m2)。b.對于使用經認證的填料(除材質為金屬或石棉水泥外)和易燃風扇甲板的逆流冷卻塔,應在風扇甲板下安裝噴淋頭,噴水強度≥14.3L/(min•m2)。c.對于使用金屬或石棉水泥材質的填料和易燃風扇甲板的逆流冷卻塔,應在風扇甲板下安裝噴淋頭,噴水強度≥6.1L/(min•m2)。d.在橫流冷卻塔風扇甲板下安裝的噴頭,其噴水強度≥13.5L/(min•m2)。e.在橫流冷卻塔填料上部安裝的噴頭,其噴水強度應為20L/(min•m2),末端壓力≥0.17MPa。2)潔凈室。保護潔凈室的自動噴水滅火系統的噴水強度為8.2L/(m2•min),作用面積≥278.8m2;GB要求噴水強度為8L/(min•m2),作用面積為160m2。
潔凈室上部封閉空間的自動噴水滅火系統的參數與潔凈房間相同。潔凈房間或潔凈區域的氣流向下,應采用快速響應型噴頭。其他事項消防水池及消防泵房設計消防水池和消防水泵房可采用地上或地下式,但保險商推薦建地上式。如受條件限制必須采用地下泵房時,NFPA要求地下泵房應有大于供水能力150%的重力排水能力,并設置機械通風系統。應考慮地震對水池的影響,不采用頂端敞口的水池。NFPA要求消防水池注水時間不得大于8h,消防泵房必須單獨設置,并用2h耐火時間的防火墻將消防主、備泵分開,且消防水泵房內應設置濕式噴淋系統。報警閥組及報警閥組間1)報警閥組應安裝在該閥組控制的防火區之外,便于操作的區域。2)報警閥組通常安裝在專門的報警閥組間內,閥組間應具有一定的耐火等級,閥組間應直接通向室外,或通向有耐火等級的走廊。報警閥組也可安裝在有耐火等級要求的樓梯間內。3)GB要求每個報警閥控制噴頭個數小于800個。NFPA要求輕、中危險等級每個報警閥保護面積≤4831m2,嚴重危險等級每個報警閥保護面積≤3716m2。消防泵NFPA要求,如消防水池為地下式,應采用立式軸流消防泵。保險公司要求在一級負荷供電的基礎上采用一臺電動泵、一臺柴油泵的配置,通常以電泵為主泵,柴油泵為備用泵。若要求多臺消防水泵,至少1臺應為柴油泵,柴油泵可采用人工加油。GB要求自噴泵如采用一級負荷供電,則無需采用柴油泵。NFPA要求消防泵采用降壓方式啟動,在消防干管加設電接點壓力傳感器。消防水泵出水管上應安裝試水閥,試水閥上安裝文丘里流量計,以便對消防泵進行檢測和校核。
流量計前、后直管段長度應分別≥5倍和2倍管徑。1)電動消防泵。NFPA要求消防電泵,水泵Q—H特性曲線相對平滑,流量為額定流量的150%時,揚程應≥額定揚程的65%,零流量時的揚程≤額定揚程的140%。2)柴油消防泵。柴油消防泵以柴油為動力,燃燒會發熱需用水冷卻,其冷卻水一般取消防泵出水管道的高壓消防水,冷卻腔最大承受壓力為0.42MPa,需對冷卻水進行減壓,且冷卻水排水須可見。柴油消防泵由于靠柴油為動力,其出力有可能超過額定功率即發生“飛車”現象,故需在出水管上安裝主泄壓閥,以降低泵體承受的壓力,泄壓管道上應安裝可視鏡,以便觀察,或泄壓排水可見亦可。柴油消防泵配套的油罐容積應≥消防泵額定8h的消耗量。柴油消防泵應配套提供:冷卻水減壓閥、主泄壓閥、視鏡、試水閥、文丘里流量計、日用油箱(附液位傳感器和液位計)等。3)消防泵控制柜。控制柜要求與消防泵成套供應,并應采用經FM認證的產品,控制柜有380/3/50及220/1/50兩種,根據消防泵功率大小進行選配。4)穩壓泵。穩壓泵及其控制柜無需滿足FM認證的要求,但對穩壓泵的選型有以下要求:穩壓泵流量要求:1gpm<Q<10minmakeup(10min補水量)。補水量的確定:1.9L/h每100個可拆卸埋地接頭。PIV控制閥的設置PIV———PostIndicatorValve示位閥,閥體上有開關狀態的顯示屏,閥體可直接埋地,閥桿高出地面0.9m。保險商要求室外消防環網上的分段閥門應采用PIV閥,并在室內噴淋系統的進戶管及上設置PIV閥,并在兩條進戶管中間的室外消防干管上設置PIV閥,以保證在室外消防環網一側管道出現故障關閉檢修時,另外的一側仍能保證通過全部消防水量。室外管道敷設FM要求對埋地消防管道的彎頭、三通和堵頭等位置設置鋼筋混凝土支墩作為止推支座。埋地消防管道覆土深度應滿足:1)存在冰凍危險的地區,管頂位于凍土深度以下1ft(0.3m)。2)不會冰凍的地區,管道覆土深度不應小于2.5ft(0.8m),以避免機械損傷。3)道路下管道覆土深度至少為3ft(0.9m)。4)鐵軌下管道覆土深度至少為4ft(1.2m)。3結語本文所述僅為筆者對于保險商參與下的工程設計的點滴體會和總結,希望為各位同仁的消防設計提供一些參考,不妥之處望指教。不同的項目、業主、保險商會有不同的要求,應結合具體項目與業主、保險商及當地消防主管部門充分協調、溝通,還要查閱有關NFPA,FM條款,同時結合中國規范,堅持原則性和靈活性相結合最終達成共識是關鍵。