日日夜夜撸啊撸,欧美韩国日本,日本人配种xxxx视频,在线免播放器高清观看

函數教案大全11篇

時間:2023-03-15 14:59:42

緒論:寫作既是個人情感的抒發,也是對學術真理的探索,歡迎閱讀由發表云整理的11篇函數教案范文,希望它們能為您的寫作提供參考和啟發。

函數教案

篇(1)

函數的定義域、值域及單調性。

③注重函數思想、等價轉化、分類討論等思想的滲透,提高

解題能力。

教學重點與難點:對數函數的性質的應用。

教學過程設計:

⒈復習提問:對數函數的概念及性質。

⒉開始正課

1比較數的大小

例1比較下列各組數的大小。

⑴loga5.1,loga5.9(a>0,a≠1)

⑵log0.50.6,logЛ0.5,lnЛ

師:請同學們觀察一下⑴中這兩個對數有何特征?

生:這兩個對數底相等。

師:那么對于兩個底相等的對數如何比大小?

生:可構造一個以a為底的對數函數,用對數函數的單調性比大小。

師:對,請敘述一下這道題的解題過程。

生:對數函數的單調性取決于底的大小:當0<a<1時,函數y=logax單

調遞減,所以loga5.1>loga5.9;當a>1時,函數y=logax單調遞

增,所以loga5.1<loga5.9。

板書:

解:Ⅰ)當0<a<1時,函數y=logax在(0,+∞)上是減函數,

5.1<5.9loga5.1>loga5.9

Ⅱ)當a>1時,函數y=logax在(0,+∞)上是增函數,

5.1<5.9loga5.1<loga5.9

師:請同學們觀察一下⑵中這三個對數有何特征?

生:這三個對數底、真數都不相等。

師:那么對于這三個對數如何比大小?

生:找“中間量”,log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,

log0.50.6<1,所以logЛ0.5<log0.50.6<lnЛ。

板書:略。

師:比較對數值的大小常用方法:①構造對數函數,直接利用對數函

數的單調性比大小,②借用“中間量”間接比大小,③利用對數

函數圖象的位置關系來比大小。

2函數的定義域,值域及單調性。

例2⑴求函數y=的定義域。

⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)

師:如何來求⑴中函數的定義域?(提示:求函數的定義域,就是要

使函數有意義。若函數中含有分母,分母不為零;有偶次根式,

被開方式大于或等于零;若函數中有對數的形式,則真數大于

零,如果函數中同時出現以上幾種情況,就要全部考慮進去,求

它們共同作用的結果。)

生:分母2x-1≠0且偶次根式的被開方式log0.8x-1≥0,且真數x>0。

板書:

解:2x-1≠0x≠0.5

log0.8x-1≥0,x≤0.8

x>0x>0

x(0,0.5)∪(0.5,0.8〕

師:接下來我們一起來解這個不等式。

分析:要解這個不等式,首先要使這個不等式有意義,即真數大于零,

再根據對數函數的單調性求解。

師:請你寫一下這道題的解題過程。

生:<板書>

解:x2+2x-3>0x<-3或x>1

(3x+3)>0,x>-1

x2+2x-3<(3x+3)-2<x<3

不等式的解為:1<x<3

例3求下列函數的值域和單調區間。

⑴y=log0.5(x-x2)

⑵y=loga(x2+2x-3)(a>0,a≠1)

師:求例3中函數的的值域和單調區間要用及復合函數的思想方法。

下面請同學們來解⑴。

生:此函數可看作是由y=log0.5u,u=x-x2復合而成。

板書:

解:⑴u=x-x2>0,0<x<1

u=x-x2=-(x-0.5)2+0.25,0<u≤0.25

y=log0.5u≥log0.50.25=2

y≥2

xx(0,0.5]x[0.5,1)

u=x-x2

y=log0.5u

y=log0.5(x-x2)

函數y=log0.5(x-x2)的單調遞減區間(0,0.5],單調遞增區間[0.5,1)

注:研究任何函數的性質時,都應該首先保證這個函數有意義,否則

函數都不存在,性質就無從談起。

師:在⑴的基礎上,我們一起來解⑵。請同學們觀察一下⑴與⑵有什

么區別?

生:⑴的底數是常值,⑵的底數是字母。

師:那么⑵如何來解?

生:只要對a進行分類討論,做法與⑴類似。

板書:略。

⒊小結

這堂課主要講解如何應用對數函數的性質解決一些問題,希望能

通過這堂課使同學們對等價轉化、分類討論等思想加以應用,提高解題能力。

⒋作業

⑴解不等式

①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a為常數)

⑵已知函數y=loga(x2-2x),(a>0,a≠1)

①求它的單調區間;②當0<a<1時,分別在各單調區間上求它的反函數。

⑶已知函數y=loga(a>0,b>0,且a≠1)

①求它的定義域;②討論它的奇偶性;③討論它的單調性。

⑷已知函數y=loga(ax-1)(a>0,a≠1),

①求它的定義域;②當x為何值時,函數值大于1;③討論它的

單調性。

篇(2)

2、能寫出實際問題中正比例關系與一次函數關系的解析式.

3、滲透數學建模的思想,使學生體會到數學的抽象性和廣泛的應用性.

4、激發學生學習數學的興趣,培養學生分析問題、解決問題的能力.

教學重點:對于一次函數與正比例函數概念的理解.

教學難點:根據具體條件求一次函數與正比例函數的解析式.

教學方法:結構教學法、以學生“再創造”為主的教學方法

教學過程:

1、復習舊課

前面我們學習了函數的相關知識,(教師在黑板上畫出本章結構并讓學生說出前三節的內容)

2、引入新課

就象以前我們學習方程、一元一次方程;不等式、一元一次不等式的內容時一樣,我們在學習了函數這個概念以后,要學習一些具體的函數,今天我們要學習的是一次函數.

顧名思義,誰能根據一次函數這個名字,類比一元一次方程、一元一次不等式的概念能舉出一些一次函數的例子?(學生完全具備這種類比的能力,所以要快、不要耽誤太多時間叫幾個同學回答就可以了.教師將學生的正確的例子寫在黑板上)

這些函數有什么共同特點呢?(注意根據學生情況適當引導,看能否歸納出一般結果.)不難看出函數都是用自變量的一次式表示的,可以寫成

()

的形式.

一般地,如果

(是常數,)(括號內用紅字強調)

那么y叫做x的一次函數.

特別地,當b=0時,一次函數就成為

(是常數,)

3、例題講解

例1、某油管因地震破裂,導致每分鐘漏出原油30公升

(1)如果x分鐘共漏出y公升,寫出y與x之間的函數關系式

(2)破裂3.5小時后,共漏出原油多少公升

分析:y與x成正比例

解:(1)

(2)(升)

例2、小丸子的存折上已經有500元存款了,從現在開始她每個月可以得到150元的零用錢,小丸子計劃每月將零用錢的60%存入銀行,用以購買她期盼已久的CD隨身聽(價值1680元)

(1)列出小丸子的銀行存款(不計利息)y與月數x的函數關系式;

(2)多長時間以后,小丸子的銀行存款才能買隨身聽?

分析:銀行存款數由兩部分構成:原有的存款500元,后存入的零用錢

解:(1)

(2)1680=500+90x解得x=13.…

所以還需要14個月,小丸子才能買隨身聽

例3、已知函數是正比例函數,求的值

分析:本題考察的是正比例函數的概念

解:

說明:第一題讓學生上黑板來完成,二、三題學生分組討論每個組討論出一個結果,寫在黑板上

4、小結

由學生對本節課知識進行總結,教師板書即可.

5、布置作業

書面作業:1、書后習題2、自己寫出一個實際中的一次函數的例子并進行討論

探究活動

某居民小區按照分期付款的福利售房方式購房,政府給予一定的貼息.小明家購得一套現款價值120000元的房子,購房時首期(第一年)付款30000元,從第二年起,以后每年應付房款為5000元與上一年剩余欠款利息的和.(剩余欠款年利率為0.4%)

(1)若第x(年小明家交付房款y元,求y與x的函數關系式;

篇(3)

2、在識圖過程中,滲透數形結合的數學思想.

3、從不同知識的背景提取的對象,可以使學生認識到數學的廣泛應用性.

4、激發學生學習數學的興趣,培養學生的探索精神

教學重點:培養學生看圖識圖的能力

教學難點:滲透數形結合的數學思想

教學用具:計算機、投影機

教學方法:談話法、分組討論

教學過程:

1、閱讀習題13.3的第四題

學生閱讀后,老師可以提問學生,分別回答:

下圖是北京春季某一天的

2、提出看圖說圖的重要性

隨著計算機的普及,很多軟件都可以做到輸入解析式后,立刻顯示出函數圖象來,這樣看圖、識圖就變得相當重要了.從上題就可以看出,圖形的表示更直觀,一目了然.也便于分析結論.數學不僅有數的一面,也有“形”的一面.美國著名數學家M克萊茵曾指出:“只要代數同幾何分道揚鑣,它們的進展就緩慢,它們的應用就狹窄.但是當這兩門科學結合成伴侶時,它們就相互吸取新鮮的活力,從那以后,就以快速的步伐走向完善.”數學具有廣泛的應用性,其它學科和日常生活都可以找到應用數學解決問題的例子.

3、為學生提供相對豐富的素材,體會以圖識性.

例1、如圖所示,A、B兩條曲線表示A、B兩種物質在不同溫度時的相應溶解度,現有未飽和的A、B溶液各一杯,它們的溫度都是.如果不準增加A、B兩種溶質,請你想一想,用什么辦法能分別把它們變成飽和溶液?

(讀題后,可組織學生分組討論.若學生還沒有學習相應的化學知識,老師可以解釋一下.一般學生都能理解.關鍵是學生都從圖中看出了什么.既有定量的分析,又能得出定性的規律).

從A、B的溶解度曲線分析,隨著溫度升高,A物質的溶解度增大很快,而物質B的溶解度變化不大,針對這兩種不同的特征,可以采用不同的方法.

如對未飽和的A溶液,可以采用降低溫度的使它飽和因為根據A物質的曲線,可以看出,降低溫度,物質A的溶解度會迅速減小.

而對B物質來講,它的溶解度受溫度的影響變化不大,要把不飽和溶液變為飽和,就需要用減少溶劑的辦法.把溶液加熱,使溶劑蒸發掉一些.溶劑逐漸減少到一定程度,不飽和的溶液就會變成飽和的了.

例2、如圖,是各月氣溫的分配圖

能從圖中找出氣溫最低的月份,氣溫最高的月份.

并判斷出該地所處的氣溫帶.

分析:最高氣溫在7月,最低在2月.氣溫曲線的

下限也在以上,即~之間,因此可判斷出

該地位于亞熱帶.

(從數字的變化中,找出事物發展的規律.數學為其它科學所用,數學能力也包括科學的收集信息,整理信息,分析信息的能力.本課例也在試圖探索出一條數學與其它學科綜合的課例,讓學生切實地體會出畫圖象的好處,體會到數學的用處.數學收集的是數量,但我們可以憑借這些數量,發現它們背后的科學規律.

例3、沒有創新就沒有發展.因此現代社會要求人必須具有創造性的思維.你想過有關創造性的問題嗎?人的創造性思維發展是否隨著年齡的增大而呈直線上升趨勢?男女之間有區別嗎?你可以談一談你的想法.

參考資料:思維的流暢性,是指在限定時間內產生觀念數量的多少.在短時間內產生的觀念多,思維流暢性大;反之,思維缺乏流暢性.以研究智力結構和創造性思維而聞名的美國心理學家吉爾福特把思維流暢性分為四種形式:①用詞的流暢性,一定時間內能產生含有規定的字母或字母組合的詞匯量的多少;②聯想的流暢性,在限定的時間內能夠從一個指定的詞當中產生同意詞(或反義詞)數量的多少;③表達的流暢性,按照句子結構要求能夠排列詞匯量的數量的多少;④觀念的流暢性,能夠在限定的時間內產生滿足一定要求的觀念的多少,也就是提出解決問題的答案的多少.

以上的參考資料教師可視學生的情形靈活處理,可以作為預習作業提前下發,也可以在上課時,由老師進行通俗的解釋.

右圖是以美國心理學家對小學一年級學生至成年人進行大規模有組織的的創造性思維測驗后,根據其中的流暢性分數繪制的曲線圖.

(1)從圖中可以看出,創造性思維的發展不是直線的,而是成犬齒形曲線

(2)男女生曲線基本相似,波峰與波谷基本出現在同一點上.

(3)小學一至三年級呈直線上升狀態;小學四年級下跌;小學年級又回復上升;小學六年級至初中一年級第二次下降;以后直至成人基本保持上升趨勢.

篇(4)

二、學情分析:

在初中學生已經學習過三步作圖法(列表,描點、連線)——“描點作圖”法,對于函數y=sinx,當x取值時,y的值大都是近似值,加之作圖上的誤差,很難認識新函數y=sinx的圖象的真實面貌。因為在前面已經學習過三角函數線,這就為用幾何法作圖提供了基礎。動手作出函數y=sinx和y=cosx的圖象,學生不會感到困難。

三、教學目標:

依據教學大綱的要求,制訂如下三維教學目標:

知識目標是:1.理解幾何法作圖原理(難點);

2.掌握五點法作圖(重點);

3.了解三角函數圖象的變換作圖.

能力目標是:通過識記正、余弦曲線的形狀特征,培養學生分析問題、

解決問題的能力;強化學生"數形結合"的數學思想.

發展目標是:教給學生靈活的思維方法,培養學生的學習興趣和勇于

探索、勇于創新的精神,提高綜合素質.

四、設計理念:

教無定法,貴在得法.誘思探究學科教學論認為:在教學思想上是啟發式,在教學過程上是探究式,在教學價值上是發展式。德國教育學家第斯多惠也曾說過:教學的藝術不在于傳授的本領,而在于激勵、喚醒、鼓舞.為了充分調動學生學習的積極性和激發學生的參與、探究和體驗的欲望,讓他們既動腦又動手,充分讓學生參與教學活動。同時利用多媒體電教手段提高學生的學習興趣.采用啟發、引導和學生探究、實踐、體驗相結合的教學方法;教給學生“多動手、勤動腦、敢猜想、善發現、重體驗、促發展”的學習方法.體現“教師是主導,學生是主體”的教學原則.使學生不但“學會”而且“會學”,并逐步感受到數學的美,產生成就感,從而極大地提高對數學的學習興趣.也只有這樣做,才能適應素質教育下培養“創新型”人才的需要.

五、教學程序:

本節課的教學過程設計,主要是從“三性”即“課堂流程的可操作性,知識目標的可接受性,學生主動學習的積極性”考慮的,對整個教學過程作如下安排:

教學程序圖如下:

第一部分:導入.先復習以前學過的函數圖象的作法——描點法,再讓學生觀察波動圖象演示儀,激起學生的興趣.指出這種形狀的曲線就是今天要研究的正、余弦函數的圖象.如何作出該曲線呢?

以設問和探索的方式導入新課,創設情境,激發思維,讓學生帶著問題,有目的地參與下列教學活動.

第二部分:幾何法作圖.引導學生在單位圓中作出特殊角的三角函數線,并進行平移,描點作圖.先作出y=sinx(x∈[0,2π])和y=cosx(x∈[0,2π]的圖象,再依據誘導公式一平移圖象得出y=sinx,x∈R的圖象.同法得出y=cosx,x∈R的圖象.

第三部分:多媒體展示.教師利用多媒體展示用Flas制作的課件,規范作圖過程和步驟,統一認識y=sinx(x∈[0,2π])和y=cosx(x∈[0,2π]的圖象,在此提醒學生在直角坐標系中,橫、縱坐標軸的長度單位必須一致。否則畫出的圖象不是正弦函數的真實面貌。

第四部分:“五點法”作圖.曲線形成后,讓學生觀察圖象的形狀特征,分析討論,提煉出五個關鍵點,歸納出“五點法”作圖步驟.

第五部分:總結.讓學生自己總結本節課的重點、難點和學習目標,教師再補充.這樣做,會檢測出學生聽課、分析、思考和掌握知識的情況,對本節課的教學起到畫龍點睛的作用.

如此設計,聯系了新舊知識,體現了從特殊到一般,再由一般到特殊的認知規律.在這種螺旋式上升的過程中,學生將通過自己的親自動手實踐,不僅學到本節課的知識,而且還將提高思維水平和認知能力.同時也體現了"教師為引導,學生為主體,體驗為紅線,探索得材料,研究獲本質,思維促發展"的教學思想.同時在教學過程中配以多媒體課件的展示,圖文并茂,簡潔明快,充分調動學生的各個感官,使學生學的生動,學的有趣,增大課堂容量,提高課堂效率.

為了突破幾何法作圖這個難點,制作了多媒體課件,將y=sinx,x∈R

和y=cosx,x∈R圖象的作法分解為三個問題來解決,降低了難度.通過展示課件,生動形象地再現三角函數線的平移和曲線形成過程.使原本枯燥地知識變得生動有趣,激發學生的興趣,調動學生的積極性(通過教學也的確是這樣的).及時讓學生跟著演示作圖,提高學生的動手能力、模仿能力、創造能力.直觀的動畫,不僅使學生愉快地接受新知識,而且將激發學生的創造性思維和想象力,使學生充分發揮其思維潛能,拓展思維空間.

用“三步曲”來突出“五點法”作圖這個重點.第一步設疑:“幾何法作圖.由于取點個越多,畫出的圖象也就比較精確,但也較為麻煩.在精確度要求不高的前提下,能否少定一些點,作出其簡圖呢?”問題的提出可以立刻抓住學生的好奇心,激起學生強烈的求知欲.第二步引導:讓學生觀察正弦函數y=sinx,x∈[0,2π]和余弦函數y=cosx,x∈[0,2π]的圖象,啟發哪些點對決定圖象的形狀起著關鍵的作用呢?引導學生尋找出五個關鍵點.體現教師的主導作用;第三步小結:讓學生分組討論,互相補充,歸納出五點法作圖步驟.教師對學生討論的情況作出評價并指出作圖應注意的問題,然后小結:“五點法”可以比較簡捷地作出正弦、余弦函數的草圖,對于以后研究正弦、余弦函數的性質將起到重要的作用.這樣設計體現了“多動手、勤動腦、敢猜想、善發現”的學習方法,使學生真正成為教學的主體.

應用:畫出下列函數的簡圖:

(1)y=1+sinxx∈[0,2π];

(2)y=-cosxx∈[0,2π].

解:(1)按五個關鍵點列表:

利用正弦函數的性質描點畫圖(如下圖).

(2)按五個關鍵點列表:利用余弦函數的性質描點作圖(如下圖).

反饋練習:

1.在同一坐標系中用五點法分別畫出函數y=sinx,x∈[0,2π]和y=cosx,x[-,]的簡圖.通過觀察兩條曲線,后者經過怎樣平行移動就可以得到前者?

2.觀察正弦函數和余弦函數,寫出滿足下列條件的x的區間:

(1)sinx>0(2)sinx<0(3)cosx>0(4)cosx<0

(例題、練習都用課件展示)

本節例題仍選用教材上的例題,但解答除“五點法”之外,又引導學生利用函數圖象的平移對稱變換來作圖.通過一題多解,可幫助學生加深對知識的認知程度,培養靈活的思維方式.學會遇到新問題時,善于調動所學過的舊知識,運用新舊知識間的聯系,增強分析問題和解決問題的能力.

反饋練習設計層次分明:練習1為鞏固基礎知識型,對課堂內容知識的再認識(五點作圖及圖象變換);練習2為提高能力型,是對正(余)弦函數圖象的靈活運用,由易到難,體現因材施教重效果,循序漸進促發展的教學理念.

篇(5)

2.2.通過變式教學,培養學生思維的敏捷性、廣闊性、深刻性;

3.3.通過二次函數的教學讓學生進一步體會研究函數的一般方法;加深對于數形結合思想認識。

教學重點:二次函數的意義;會畫二次函數圖象。

教學難點:描點法畫二次函數y=ax2的圖象,數與形相互聯系。

教學過程設計:

一.一.創設情景、建模引入

我們已學習了正比例函數及一次函數,現在來看看下面幾個例子:

1.寫出圓的半徑是R(CM),它的面積S(CM2)與R的關系式

答:S=πR2.①

2.寫出用總長為60M的籬笆圍成矩形場地,矩形面積S(M2)與矩形一邊長L(M)之間的關系

答:S=L(30-L)=30L-L2②

分析:①②兩個關系式中S與R、L之間是否存在函數關系?

S是否是R、L的一次函數?

由于①②兩個關系式中S不是R、L的一次函數,那么S是R、L的什么函數呢?這樣的函數大家能不能猜想一下它叫什么函數呢?

答:二次函數。

這一節課我們將研究二次函數的有關知識。(板書課題)

二.二.歸納抽象、形成概念

一般地,如果y=ax2+bx+c(a,b,c是常數,a≠0),

那么,y叫做x的二次函數.

注意:(1)必須a≠0,否則就不是二次函數了.而b,c兩數可以是零.(2)由于二次函數的解析式是整式的形式,所以x的取值范圍是任意實數.

練習:1.舉例子:請同學舉一些二次函數的例子,全班同學判斷是否正確。

2.出難題:請同學給大家出示一個函數,請同學判斷是否是二次函數。

(若學生考慮不全,教師給予補充。如:;;;的形式。)

(通過學生觀察、歸納定義加深對概念的理解,既培養了學生的實踐能力,有培養了學生的探究精神。并通過開放性的練習培養學生思維的發散性、開放性。題目用了一些人性化的詞語,也增添了課堂的趣味性。)

由前面一次函數的學習,我們已經知道研究函數一般應按照定義、圖象、性質、求解析式幾個方面進行研究。二次函數我們也會按照定義、圖象、性質、求解析式幾個方面進行研究。

(在這里指出學習函數的一般方法,旨在及時進行學法指導;并將此方法形成技能,以指導今后的學習;進一步培養終身學習的能力。)

三.三.嘗試模仿、鞏固提高

讓我們先從最簡單的二次函數y=ax2入手展開研究

1.1.嘗試:大家知道一次函數的圖象是一條直線,那么二次函數的圖象是什么呢?

請同學們畫出函數y=x2的圖象。

(學生分別畫圖,教師巡視了解情況。)

2.2.模仿鞏固:教師將了解到的各種不同圖象用實物投影向大家展示,到底哪一個對呢?下面師生共同畫出函數y=x2的圖象。

解:一、列表:

x

-3

-2

-1

1

2

3

Y=x2

9

4

1

1

4

9

二、描點、連線:按照表格,描出各點.然后用光滑的曲線,按照x(點的橫坐標)由小到大的順序把各點連結起來.

對照教師畫的圖象一一分析學生所畫圖象的正誤及原因,從而得到畫二次函數圖象的幾點注意。

練習:畫出函數;的圖象(請兩個同學板演)

X

-3

-2

-1

1

2

3

Y=0.5X2

4.5

2

0.5

0.5

02

4.5

Y=-X2

-9

-4

-1

-1

-4

-9

畫好之后教師根據情況講評,并引導學生觀察圖象形狀得出:二次函數y=ax2的圖象是一條拋物線。

(這里,教師在學生自己探索嘗試的基礎上,示范畫圖象的方法和過程,希望學生學會畫圖象的方法;并及時安排練習鞏固剛剛學到的新知識,通過觀察,感悟拋物線名稱的由來。)

三.三.運用新知、變式探究

畫出函數y=5x2圖象

學生在畫圖象的過程中遇到函數值較大的困難,不知如何是好。

x

-0.5

-0.4

-0.3

-0.2

-0.1

0.1

0.2

0.3

0.4

0.5

Y=5x2

1.25

0.8

0.45

0.2

0.05

0.05

0.2

0.45

0.8

1.25

教師出示已畫好的圖象讓學生觀察

注意:1.畫圖象應描7個左右的點,描的點越多圖象越準確。

2.自變量X的取值應注意關于Y軸對稱。

3.對于不同的二次函數自變量X的取值應更加靈活,例如可以取分數。

四.四.歸納小結、延續探究

教師引導學生觀察表格及圖象,歸納y=ax2的性質,學生們暢所欲言,各抒己見;互相改進,互相完善。最終得到如下性質:

一般的,二次函數y=ax2的圖象是一條拋物線,對稱軸是Y軸,頂點是坐標原點;當a>0時,圖象的開口向上,最低點為(0,0);當a<0時,圖象的開口向下,最高點為(0,0)。

五.五.回顧反思、總結收獲

在這一環節中,教師請同學們回顧一節課的學習暢談自己的收獲或多、或少、或幾點、或全面,總之是人人有所得,個個有提高。這也正是新課標中所倡導的新的理念——不同的人在數學上得到不同的發展。

(在整個一節課上,基本上是學生講為主,教師講為輔。一些較為困難的問題,我也鼓勵學生大膽思考,積極嘗試,不怕困難,一個人完不成,講不透,第二個人、第三個人補充,直到完成整個例題。這樣上課氣氛非常活躍,學生之間常會因為某個觀點的不同而爭論,這就給教師提出了更高的要求,一方面要控制好整節課的節奏,另一方面又要察言觀色,適時地對某些觀點作出判斷,或與學生一同討論。)

二次函數的教學設計

馬玉寶

教學內容:人教版九年義務教育初中第三冊第108頁

教學目標:

1.1.理解二次函數的意義;會用描點法畫出函數y=ax2的圖象,知道拋物線的有關概念;

2.2.通過變式教學,培養學生思維的敏捷性、廣闊性、深刻性;

3.3.通過二次函數的教學讓學生進一步體會研究函數的一般方法;加深對于數形結合思想認識。

教學重點:二次函數的意義;會畫二次函數圖象。

教學難點:描點法畫二次函數y=ax2的圖象,數與形相互聯系。

教學過程設計:

一.一.創設情景、建模引入

我們已學習了正比例函數及一次函數,現在來看看下面幾個例子:

1.寫出圓的半徑是R(CM),它的面積S(CM2)與R的關系式

答:S=πR2.①

2.寫出用總長為60M的籬笆圍成矩形場地,矩形面積S(M2)與矩形一邊長L(M)之間的關系

答:S=L(30-L)=30L-L2②

分析:①②兩個關系式中S與R、L之間是否存在函數關系?

S是否是R、L的一次函數?

由于①②兩個關系式中S不是R、L的一次函數,那么S是R、L的什么函數呢?這樣的函數大家能不能猜想一下它叫什么函數呢?

答:二次函數。

這一節課我們將研究二次函數的有關知識。(板書課題)

二.二.歸納抽象、形成概念

一般地,如果y=ax2+bx+c(a,b,c是常數,a≠0),

那么,y叫做x的二次函數.

注意:(1)必須a≠0,否則就不是二次函數了.而b,c兩數可以是零.(2)由于二次函數的解析式是整式的形式,所以x的取值范圍是任意實數.

練習:1.舉例子:請同學舉一些二次函數的例子,全班同學判斷是否正確。

2.出難題:請同學給大家出示一個函數,請同學判斷是否是二次函數。

(若學生考慮不全,教師給予補充。如:;;;的形式。)

(通過學生觀察、歸納定義加深對概念的理解,既培養了學生的實踐能力,有培養了學生的探究精神。并通過開放性的練習培養學生思維的發散性、開放性。題目用了一些人性化的詞語,也增添了課堂的趣味性。)

由前面一次函數的學習,我們已經知道研究函數一般應按照定義、圖象、性質、求解析式幾個方面進行研究。二次函數我們也會按照定義、圖象、性質、求解析式幾個方面進行研究。

(在這里指出學習函數的一般方法,旨在及時進行學法指導;并將此方法形成技能,以指導今后的學習;進一步培養終身學習的能力。)

三.三.嘗試模仿、鞏固提高

讓我們先從最簡單的二次函數y=ax2入手展開研究

1.1.嘗試:大家知道一次函數的圖象是一條直線,那么二次函數的圖象是什么呢?

請同學們畫出函數y=x2的圖象。

(學生分別畫圖,教師巡視了解情況。)

2.2.模仿鞏固:教師將了解到的各種不同圖象用實物投影向大家展示,到底哪一個對呢?下面師生共同畫出函數y=x2的圖象。

解:一、列表:

x

-3

-2

-1

1

2

3

Y=x2

9

4

1

1

4

9

二、描點、連線:按照表格,描出各點.然后用光滑的曲線,按照x(點的橫坐標)由小到大的順序把各點連結起來.

對照教師畫的圖象一一分析學生所畫圖象的正誤及原因,從而得到畫二次函數圖象的幾點注意。

練習:畫出函數;的圖象(請兩個同學板演)

X

-3

-2

-1

1

2

3

Y=0.5X2

4.5

2

0.5

0.5

02

4.5

Y=-X2

-9

-4

-1

-1

-4

-9

畫好之后教師根據情況講評,并引導學生觀察圖象形狀得出:二次函數y=ax2的圖象是一條拋物線。

(這里,教師在學生自己探索嘗試的基礎上,示范畫圖象的方法和過程,希望學生學會畫圖象的方法;并及時安排練習鞏固剛剛學到的新知識,通過觀察,感悟拋物線名稱的由來。)

三.三.運用新知、變式探究

畫出函數y=5x2圖象

學生在畫圖象的過程中遇到函數值較大的困難,不知如何是好。

x

-0.5

-0.4

-0.3

-0.2

-0.1

0.1

0.2

0.3

0.4

0.5

Y=5x2

1.25

0.8

0.45

0.2

0.05

0.05

0.2

0.45

0.8

1.25

教師出示已畫好的圖象讓學生觀察

注意:1.畫圖象應描7個左右的點,描的點越多圖象越準確。

2.自變量X的取值應注意關于Y軸對稱。

3.對于不同的二次函數自變量X的取值應更加靈活,例如可以取分數。

四.四.歸納小結、延續探究

教師引導學生觀察表格及圖象,歸納y=ax2的性質,學生們暢所欲言,各抒己見;互相改進,互相完善。最終得到如下性質:

一般的,二次函數y=ax2的圖象是一條拋物線,對稱軸是Y軸,頂點是坐標原點;當a>0時,圖象的開口向上,最低點為(0,0);當a<0時,圖象的開口向下,最高點為(0,0)。

篇(6)

2、使學生能夠根據實際問題中的條件,確定一次函數與正比例函數的解析式。

二、內容分析

1、初中主要是通過幾種簡單的函數的初步介紹來學習函數的,前面三小節,先學習函數的概念與表示法,這是為學習后面的幾種具體的函數作準備的,從本節開始,將依次學習一次函數(包括正比例函數)、二次函數與反比例函數的有關知識,大體上,每種函數是按函數的解析式、圖象及性質這個順序講述的,通過這些具體函數的學習,學生可以加深對函數意義、函數表示法的認識,并且,結合這些內容,學生還會逐步熟悉函數的知識及有關的數學思想方法在解決實際問題中的應用。

2、舊教材在講幾個具體的函數時,是按先講正反比例函數,后講一次、二次函數順序編排的,這是適當照顧了學生在小學數學中學了正反比例關系的知識,注意了中小學的銜接,新教材則是安排先學習一次函數,并且,把正比例函數作為一次函數的特例予以介紹,而最后才學習反比例函數,為什么這樣安排呢?第一,這樣安排,比較符合學生由易到難的認識規津,從函數角度看,一次函數的解析式、圖象與性質都是比較簡單的,相對來說,反比例函數就要復雜一些了,特別是,反比例函數的圖象是由兩條曲線組成的,先學習反比例函數難度可能要大一些。第二,把正比例函數作為一次函數的特例介紹,既可以提高學習效益,又便于學生了解正比例函數與一次函數的關系,從而,可以更好地理解這兩種函數的概念、圖象與性質。

3、“函數及其圖象”這一章的重點是一次函數的概念、圖象和性質,一方面,在學生初次接觸函數的有關內容時,一定要結合具體函數進行學習,因此,全章的主要內容,是側重在具體函數的講述上的。另一方面,在大綱規定的幾種具體函數中,一次函數是最基本的,教科書對一次函數的討論也比較全面。通過一次函數的學習,學生可以對函數的研究方法有一個初步的認識與了解,從而能更好地把握學次函數、反比例函數的學習方法。

三、教學過程

復習提問:

1、什么是函數?

2、函數有哪幾種表示方法?

3、舉出幾個函數的例子。

新課講解:

可以選用提問時學生舉出的例子,也可以直接采用教科書中的四個函數的例子。然后讓學生觀察這些例子(實際上均是一次函數的解析式),y=x,s=3t等。觀察時,可以按下列問題引導學生思考:

(1)這些式子表示的是什么關系?(在學生明確這些式子表示函數關系后,可指出,這是函數。)

(2)這些函數中的自變量是什么?函數是什么?(在學生分清后,可指出,式子中等號左邊的y與s是函數,等號右邊是一個代數式,其中的字母x與t是自變量。)

(3)在這些函數式中,表示函數的自變量的式子,分別是關于自變量的什么式呢?(這題牽扯到有關整式的基本概念,表示函數的自變量的式子也就是等號右邊的式子,都是關于自變量的一次式。)

(4)x的一次式的一般形式是什么?(結合一元一次方程的有關知識,可以知道,x的一次式是kx+b(k≠0)的形式。)

由以上的層層設問,最后給出一次函數的定義。

一般地,如果y=kx+b(k,b是常數,k≠0)那么,y叫做x的一次函數。

對這個定義,要注意:

(1)x是變量,k,b是常數;

(2)k≠0(當k=0時,式子變形成y=b的形式。b是x的0次式,y=b叫做常數函數,這點,不一定向學生講述。)

由一次函數出發,當常數b=0時,一次函數kx+b(k≠0)就成為:y=kx(k是常數,k≠0)我們把這樣的函數叫正比例函數。

在講述正比例函數時,首先,要注意適當復習小學學過的正比例關系,小學數學是這樣陳述的:

兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。

寫成式子是(一定)

需指出,小學因為沒有學過負數,實際的例子都是k>0的例子,對于正比例函數,k也為負數。

篇(7)

1.使學生了解反函數的概念;

2.使學生會求一些簡單函數的反函數;

3.培養學生用辯證的觀點觀察、分析解決問題的能力。

教學重點

1.反函數的概念;

2.反函數的求法。

教學難點

反函數的概念。

教學方法

師生共同討論

教具裝備

幻燈片2張

第一張:反函數的定義、記法、習慣記法。(記作A);

第二張:本課時作業中的預習內容及提綱。

教學過程

(I)講授新課

(檢查預習情況)

師:這節課我們來學習反函數(板書課題)§2.4.1反函數的概念。

同學們已經進行了預習,對反函數的概念有了初步的了解,誰來復述一下反函數的定義、記法、習慣記法?

生:(略)

(學生回答之后,打出幻燈片A)。

師:反函數的定義著重強調兩點:

(1)根據y=f(x)中x與y的關系,用y把x表示出來,得到x=φ(y);

(2)對于y在c中的任一個值,通過x=φ(y),x在A中都有惟一的值和它對應。

師:應該注意習慣記法是由記法改寫過來的。

師:由反函數的定義,同學們考慮一下,怎樣的映射確定的函數才有反函數呢?

生:一一映射確定的函數才有反函數。

(學生作答后,教師板書,若學生答不來,教師再予以必要的啟示)。

師:在y=f(x)中與y=f-1(y)中的x、y,所表示的量相同。(前者中的x與后者中的x都屬于同一個集合,y也是如此),但地位不同(前者x是自變量,y是函數值;后者y是自變量,x是函數值。)

在y=f(x)中與y=f–1(x)中的x都是自變量,y都是函數值,即x、y在兩式中所處的地位相同,但表示的量不同(前者中的x是后者中的y,前者中的y是后者中的x。)

由此,請同學們談一下,函數y=f(x)與它的反函數y=f–1(x)兩者之間,定義域、值域存在什么關系呢?

生:(學生作答,教師板書)函數的定義域,值域分別是它的反函數的值域、定義域。

師:從反函數的概念可知:函數y=f(x)與y=f–1(x)互為反函數。

從反函數的概念我們還可以知道,求函數的反函數的方法步驟為:

(1)由y=f(x)解出x=f–1(y),即把x用y表示出;

(2)將x=f–1(y)改寫成y=f–1(x),即對調x=f–1(y)中的x、y。

(3)指出反函數的定義域。

下面請同學自看例1

(II)課堂練習課本P68練習1、2、3、4。

(III)課時小結

本節課我們學習了反函數的概念,從中知道了怎樣的映射確定的函數才有反函數并求函數的反函數的方法步驟,大家要熟練掌握。

(IV)課后作業

一、課本P69習題2.41、2。

二、預習:互為反函數的函數圖象間的關系,親自動手作題中要求作的圖象。

板書設計

課題:求反函數的方法步驟:

定義:(幻燈片)

注意:小結

一一映射確定的

篇(8)

1.了解對數函數的定義、圖象及其性質以及它與指數函數間的關系,會求對數函數的定義域。

2.培養培養觀察分析、抽象概括能力、歸納總結能力、邏輯推理能力、化歸轉化能力;

3.培養堅忍不拔的意志,培養發現問題和提出問題的意識、善于獨立思考的習慣,體會事物之間普遍聯系的辯證觀點。重點:對數函數的定義、圖象、性質難點:對數函數與指數函數間的關系過程:一、復習引入:實例引入:回憶學習指數函數時用的實例我們研究指數函數時,曾經討論過細胞分裂問題,某種細胞分裂時,得到的細胞的個數是分裂次數的函數,這個函數可以用指數函數=表示。現在,我們來研究相反的問題,如果要求這種細胞經過多少次分裂,大約可以得到1萬個,10萬個……細胞,那么,分裂次數就是要得到的細胞個數的函數。根據對數的定義,這個函數可以寫成對數的形式就是如果用表示自變量,表示函數,這個函數就是由反函數概念可知,與指數函數互為反函數這一節,我們來研究指數函數的反函數對數函數

二、新課

1.對數函數的定義:函數叫做對數函數;它是指數函數的反函數。對數函數的定義域為,值域為。

2.對數函數的圖象由于對數函數與指數函數互為反函數,所以的圖象與的圖象關于直線對稱。因此,我們只要畫出和的圖象關于對稱的曲線,就可以得到的圖象,然后根據圖象特征得出對數函數的性質。活動設計:由學生任意取底數作圖,觀察分析討論,教師引導、整理

3.對數函數的性質由對數函數的圖象,觀察得出對數函數的性質。見P87表圖象

性質定義域:(0,+∞)

值域:R

過點(1,0),即當時,

篇(9)

2、使學生能夠根據實際問題中的條件,確定一次函數與正比例函數的解析式。

二、內容分析

1、初中主要是通過幾種簡單的函數的初步介紹來學習函數的,前面三小節,先學習函數的概念與表示法,這是為學習后面的幾種具體的函數作準備的,從本節開始,將依次學習一次函數(包括正比例函數)、二次函數與反比例函數的有關知識,大體上,每種函數是按函數的解析式、圖象及性質這個順序講述的,通過這些具體函數的學習,學生可以加深對函數意義、函數表示法的認識,并且,結合這些內容,學生還會逐步熟悉函數的知識及有關的數學思想方法在解決實際問題中的應用。

2、舊教材在講幾個具體的函數時,是按先講正反比例函數,后講一次、二次函數順序編排的,這是適當照顧了學生在小學數學中學了正反比例關系的知識,注意了中小學的銜接,新教材則是安排先學習一次函數,并且,把正比例函數作為一次函數的特例予以介紹,而最后才學習反比例函數,為什么這樣安排呢?第一,這樣安排,比較符合學生由易到難的認識規津,從函數角度看,一次函數的解析式、圖象與性質都是比較簡單的,相對來說,反比例函數就要復雜一些了,特別是,反比例函數的圖象是由兩條曲線組成的,先學習反比例函數難度可能要大一些。第二,把正比例函數作為一次函數的特例介紹,既可以提高學習效益,又便于學生了解正比例函數與一次函數的關系,從而,可以更好地理解這兩種函數的概念、圖象與性質。

3、“函數及其圖象”這一章的重點是一次函數的概念、圖象和性質,一方面,在學生初次接觸函數的有關內容時,一定要結合具體函數進行學習,因此,全章的主要內容,是側重在具體函數的講述上的。另一方面,在大綱規定的幾種具體函數中,一次函數是最基本的,教科書對一次函數的討論也比較全面。通過一次函數的學習,學生可以對函數的研究方法有一個初步的認識與了解,從而能更好地把握學次函數、反比例函數的學習方法。

三、教學過程

復習提問:

1、什么是函數?

2、函數有哪幾種表示方法?

3、舉出幾個函數的例子。

新課講解:

可以選用提問時學生舉出的例子,也可以直接采用教科書中的四個函數的例子。然后讓學生觀察這些例子(實際上均是一次函數的解析式),y=x,s=3t等。觀察時,可以按下列問題引導學生思考:

(1)這些式子表示的是什么關系?(在學生明確這些式子表示函數關系后,可指出,這是函數。)

(2)這些函數中的自變量是什么?函數是什么?(在學生分清后,可指出,式子中等號左邊的y與s是函數,等號右邊是一個代數式,其中的字母x與t是自變量。)

(3)在這些函數式中,表示函數的自變量的式子,分別是關于自變量的什么式呢?(這題牽扯到有關整式的基本概念,表示函數的自變量的式子也就是等號右邊的式子,都是關于自變量的一次式。)

(4)x的一次式的一般形式是什么?(結合一元一次方程的有關知識,可以知道,x的一次式是kx+b(k≠0)的形式。)

由以上的層層設問,最后給出一次函數的定義。

一般地,如果y=kx+b(k,b是常數,k≠0)那么,y叫做x的一次函數。

對這個定義,要注意:

(1)x是變量,k,b是常數;

(2)k≠0(當k=0時,式子變形成y=b的形式。b是x的0次式,y=b叫做常數函數,這點,不一定向學生講述。)

由一次函數出發,當常數b=0時,一次函數kx+b(k≠0)就成為:y=kx(k是常數,k≠0)我們把這樣的函數叫正比例函數。

在講述正比例函數時,首先,要注意適當復習小學學過的正比例關系,小學數學是這樣陳述的:

兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。

寫成式子是(一定)

需指出,小學因為沒有學過負數,實際的例子都是k>0的例子,對于正比例函數,k也為負數。

其次,要注意引導學生找出一次函數與正比例函數之間的關系:正比例函數是特殊的一次函數。

課堂練習:

教科書13、4節練習第1題.

一、目的要求

1、使學生初步理解一次函數與正比例函數的概念。

2、使學生能夠根據實際問題中的條件,確定一次函數與正比例函數的解析式。

二、內容分析

1、初中主要是通過幾種簡單的函數的初步介紹來學習函數的,前面三小節,先學習函數的概念與表示法,這是為學習后面的幾種具體的函數作準備的,從本節開始,將依次學習一次函數(包括正比例函數)、二次函數與反比例函數的有關知識,大體上,每種函數是按函數的解析式、圖象及性質這個順序講述的,通過這些具體函數的學習,學生可以加深對函數意義、函數表示法的認識,并且,結合這些內容,學生還會逐步熟悉函數的知識及有關的數學思想方法在解決實際問題中的應用。

2、舊教材在講幾個具體的函數時,是按先講正反比例函數,后講一次、二次函數順序編排的,這是適當照顧了學生在小學數學中學了正反比例關系的知識,注意了中小學的銜接,新教材則是安排先學習一次函數,并且,把正比例函數作為一次函數的特例予以介紹,而最后才學習反比例函數,為什么這樣安排呢?第一,這樣安排,比較符合學生由易到難的認識規津,從函數角度看,一次函數的解析式、圖象與性質都是比較簡單的,相對來說,反比例函數就要復雜一些了,特別是,反比例函數的圖象是由兩條曲線組成的,先學習反比例函數難度可能要大一些。第二,把正比例函數作為一次函數的特例介紹,既可以提高學習效益,又便于學生了解正比例函數與一次函數的關系,從而,可以更好地理解這兩種函數的概念、圖象與性質。

3、“函數及其圖象”這一章的重點是一次函數的概念、圖象和性質,一方面,在學生初次接觸函數的有關內容時,一定要結合具體函數進行學習,因此,全章的主要內容,是側重在具體函數的講述上的。另一方面,在大綱規定的幾種具體函數中,一次函數是最基本的,教科書對一次函數的討論也比較全面。通過一次函數的學習,學生可以對函數的研究方法有一個初步的認識與了解,從而能更好地把握學次函數、反比例函數的學習方法。

三、教學過程

復習提問:

1、什么是函數?

2、函數有哪幾種表示方法?

3、舉出幾個函數的例子。

新課講解:

可以選用提問時學生舉出的例子,也可以直接采用教科書中的四個函數的例子。然后讓學生觀察這些例子(實際上均是一次函數的解析式),y=x,s=3t等。觀察時,可以按下列問題引導學生思考:

(1)這些式子表示的是什么關系?(在學生明確這些式子表示函數關系后,可指出,這是函數。)

(2)這些函數中的自變量是什么?函數是什么?(在學生分清后,可指出,式子中等號左邊的y與s是函數,等號右邊是一個代數式,其中的字母x與t是自變量。)

(3)在這些函數式中,表示函數的自變量的式子,分別是關于自變量的什么式呢?(這題牽扯到有關整式的基本概念,表示函數的自變量的式子也就是等號右邊的式子,都是關于自變量的一次式。)

(4)x的一次式的一般形式是什么?(結合一元一次方程的有關知識,可以知道,x的一次式是kx+b(k≠0)的形式。)

由以上的層層設問,最后給出一次函數的定義。

一般地,如果y=kx+b(k,b是常數,k≠0)那么,y叫做x的一次函數。

對這個定義,要注意:

(1)x是變量,k,b是常數;

(2)k≠0(當k=0時,式子變形成y=b的形式。b是x的0次式,y=b叫做常數函數,這點,不一定向學生講述。)

由一次函數出發,當常數b=0時,一次函數kx+b(k≠0)就成為:y=kx(k是常數,k≠0)我們把這樣的函數叫正比例函數。

在講述正比例函數時,首先,要注意適當復習小學學過的正比例關系,小學數學是這樣陳述的:

兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。

寫成式子是(一定)

需指出,小學因為沒有學過負數,實際的例子都是k>0的例子,對于正比例函數,k也為負數。

篇(10)

函數圖象的性質。

2、利用幾何畫板的動態性,從變化的幾何圖形中,尋找不變的幾

何規律。

3、學會作簡單函數的圖象,并對圖象作初步了解。

4、通過本節課的教學,把幾何畫板作為學生認知的工具,從而激

發學生學習和探索數學的興趣。

活動重點:圖形的性質和規律的探索

活動難點:幾何畫板的操作(作函數的圖象)

活動設施:微機室(有液晶投影儀和大屏幕或大彩電);軟件:windows操作平臺、幾何畫板、office2000等、教師準備好的五個畫板文件:hstx1.gsp、hstx2.gsp、hstx3.gsp、ymdl1.gsp、ymdl2.gsp。

活動過程:

一、展示活動主題和目標:

二、活動過程:

操作練習一:

按下列步驟進行操作,并回答相應的問題。

1、打開c:\sketch\hstx1.gsp畫板文件;

2、拖動點E和點F沿坐標軸運動(或雙擊按鈕“動畫1”),同時觀看解析式中的k和b的變化。

①當k>0時,圖象經過哪幾個象限?

②當k<0時,圖象經過哪幾個象限?

3、雙擊顯示按鈕后,在k>0和k<0兩種情況下,拖動點P沿直線移動,觀察y隨x怎樣變化?(或雙擊動畫2按鈕,單擊鼠標左鍵動畫停止,要繼續動畫,再雙擊動畫2按鈕)

4、先在坐標系內作出直線(或直接打開文件:c:\sketch\hstx2.gsp)

附:作圖步驟

①點擊“文件”菜單中的“新繪圖”命令;

②用“直尺工具”中的直線工具,在繪圖板內畫一直線,并用文本工具給直線上的兩個空心點加上標簽A和B;

③用“選擇工具”選中直線后,點擊“度量”菜單中的“方程”命令,得坐標系和直線的方程;然后,再進行以下操作,并回答問題:

(1)用鼠標拖動直線進行平移,k和b中哪個變,哪個不變?

(2)當直線通過原點時,b為多少?此時函數又叫什么函數?

(3)拖動點A,使直線繞點B旋轉,觀察直線的傾斜程度與k之間的關系?

操作練:

1、打開文件:c:\sketch\hstx3.gsp

2、保持a不變,分別上下移動b、c改變b、c的大小時,拋物線的形狀是否變化?上下移動a改變a的大小,注意觀看拋物線的開口方向與什么有關?張口程度與什么有關?

3、上下移動c改變c的大小,看拋物線怎樣變化?

4、分別改變a、b的大小,看拋物線的對稱軸是否發生變化?由3和4可知,拋物線的對稱軸與什么有關?與什么無關?

5、c保持不變,改變a、b時,拋拋線總是經過哪一點?

6、拋物線與x軸交點的個數與b2-4ac的符號有什么關系?

7、雙擊顯示按鈕,再雙擊動畫按鈕,觀察y隨x怎樣變化?

8、當a=0時,函數的圖象是什么?

操作練習三:

打開文件:c:\sketch\ymdl1.gsp

圓的兩弦AB、CD相交于圓內一點P,我們得到,如果把點P拖到圓外,上述結論是否成立?如果點在圓上呢?

操作練習四:作函數y=x2-2的圖象

作圖步驟:

1、擊“文件”菜單中“新繪圖”命令,建立新的繪圖板;

2、點擊“圖表”菜單中的“建立坐標軸”;

3、在橫坐標軸上任找一點,用“文本工具”,加上標簽“C”,選中C點,單擊“度量”菜單中的“坐標”命令,得度量值,C:(-2.80,0.00),再用“選擇工具”選擇它。(度量值變黑)

4、點擊“度量”菜單中的“計算”命令,出現計算器;

5、點擊“數值”下拉式菜單中的“點C”的“x”值,按“確定”按紐,得Xc=-2.80再用“選擇工具”選擇它。(度量值變黑)

6、點擊“度量”菜單中的“計算”命令,出現計算器,再點擊“數值”下拉式菜單中的“x[c]”,分別按計算器上的“∧”、“2”、“-”、“2”、“確定”按紐。得到代數式的值:xc2-2=14.45.

7、用“選擇工具”,分別選中Xc=-2.80xc2-2=14.45.(選取第二個對象要按鍵盤上的“shift”鍵的同時再選);

8、點擊“圖表”菜單中的“繪出(x,y)”,得到點“E”。(如果看不到點E,說明它不在當前的視窗內,此時可調整C點,使該點出現在窗口內);

9、分別選中點E和點C,點擊“作圖”菜單中的“軌跡”,得二次函數的圖象。

操作練習五:

運用練習四的原理,繪制其它函數的圖象(包括學過的和沒有學過的),談談你對所繪函數圖象的認識。

初中數學活動課教案一

函數圖象的性質

活動目標:

1、利用幾何畫板的形象性,通過量的變化,驗證并進一步研究

函數圖象的性質。

2、利用幾何畫板的動態性,從變化的幾何圖形中,尋找不變的幾

何規律。

3、學會作簡單函數的圖象,并對圖象作初步了解。

4、通過本節課的教學,把幾何畫板作為學生認知的工具,從而激

發學生學習和探索數學的興趣。

活動重點:圖形的性質和規律的探索

活動難點:幾何畫板的操作(作函數的圖象)

活動設施:微機室(有液晶投影儀和大屏幕或大彩電);軟件:windows操作平臺、幾何畫板、office2000等、教師準備好的五個畫板文件:hstx1.gsp、hstx2.gsp、hstx3.gsp、ymdl1.gsp、ymdl2.gsp。

活動過程:

一、展示活動主題和目標:

二、活動過程:

操作練習一:

按下列步驟進行操作,并回答相應的問題。

1、打開c:\sketch\hstx1.gsp畫板文件;

2、拖動點E和點F沿坐標軸運動(或雙擊按鈕“動畫1”),同時觀看解析式中的k和b的變化。

①當k>0時,圖象經過哪幾個象限?

②當k<0時,圖象經過哪幾個象限?

3、雙擊顯示按鈕后,在k>0和k<0兩種情況下,拖動點P沿直線移動,觀察y隨x怎樣變化?(或雙擊動畫2按鈕,單擊鼠標左鍵動畫停止,要繼續動畫,再雙擊動畫2按鈕)

4、先在坐標系內作出直線(或直接打開文件:c:\sketch\hstx2.gsp)

附:作圖步驟

①點擊“文件”菜單中的“新繪圖”命令;

②用“直尺工具”中的直線工具,在繪圖板內畫一直線,并用文本工具給直線上的兩個空心點加上標簽A和B;

③用“選擇工具”選中直線后,點擊“度量”菜單中的“方程”命令,得坐標系和直線的方程;然后,再進行以下操作,并回答問題:

(1)用鼠標拖動直線進行平移,k和b中哪個變,哪個不變?

(2)當直線通過原點時,b為多少?此時函數又叫什么函數?

(3)拖動點A,使直線繞點B旋轉,觀察直線的傾斜程度與k之間的關系?

操作練:

1、打開文件:c:\sketch\hstx3.gsp

2、保持a不變,分別上下移動b、c改變b、c的大小時,拋物線的形狀是否變化?上下移動a改變a的大小,注意觀看拋物線的開口方向與什么有關?張口程度與什么有關?

3、上下移動c改變c的大小,看拋物線怎樣變化?

4、分別改變a、b的大小,看拋物線的對稱軸是否發生變化?由3和4可知,拋物線的對稱軸與什么有關?與什么無關?

5、c保持不變,改變a、b時,拋拋線總是經過哪一點?

6、拋物線與x軸交點的個數與b2-4ac的符號有什么關系?

7、雙擊顯示按鈕,再雙擊動畫按鈕,觀察y隨x怎樣變化?

8、當a=0時,函數的圖象是什么?

操作練習三:

打開文件:c:\sketch\ymdl1.gsp

圓的兩弦AB、CD相交于圓內一點P,我們得到,如果把點P拖到圓外,上述結論是否成立?如果點在圓上呢?

操作練習四:作函數y=x2-2的圖象

作圖步驟:

1、擊“文件”菜單中“新繪圖”命令,建立新的繪圖板;

2、點擊“圖表”菜單中的“建立坐標軸”;

3、在橫坐標軸上任找一點,用“文本工具”,加上標簽“C”,選中C點,單擊“度量”菜單中的“坐標”命令,得度量值,C:(-2.80,0.00),再用“選擇工具”選擇它。(度量值變黑)

4、點擊“度量”菜單中的“計算”命令,出現計算器;

5、點擊“數值”下拉式菜單中的“點C”的“x”值,按“確定”按紐,得Xc=-2.80再用“選擇工具”選擇它。(度量值變黑)

6、點擊“度量”菜單中的“計算”命令,出現計算器,再點擊“數值”下拉式菜單中的“x[c]”,分別按計算器上的“∧”、“2”、“-”、“2”、“確定”按紐。得到代數式的值:xc2-2=14.45.

7、用“選擇工具”,分別選中Xc=-2.80xc2-2=14.45.(選取第二個對象要按鍵盤上的“shift”鍵的同時再選);

8、點擊“圖表”菜單中的“繪出(x,y)”,得到點“E”。(如果看不到點E,說明它不在當前的視窗內,此時可調整C點,使該點出現在窗口內);

篇(11)

過程:一、提出課題:“三角函數”

回憶初中學過的“銳角三角函數”——它是利用直角三角形中兩邊的比值來定義的。相對于現在,我們研究的三角函數是“任意角的三角函數”,它對我們今后的學習和研究都起著十分重要的作用,并且在各門學科技術中都有廣泛應用。

二、角的概念的推廣

1.回憶:初中是任何定義角的?(從一個點出發引出的兩條射線構成的幾何圖形)這種概念的優點是形象、直觀、容易理解,但它的弊端在于“狹隘”

2.講解:“旋轉”形成角(P4)

突出“旋轉”注意:“頂點”“始邊”“終邊”

“始邊”往往合于軸正半軸

3.“正角”與“負角”——這是由旋轉的方向所決定的。

記法:角或可以簡記成4.由于用“旋轉”定義角之后,角的范圍大大地擴大了。

1°角有正負之分如:a=210°b=-150°g=-660°

2°角可以任意大

實例:體操動作:旋轉2周(360°×2=720°)3周(360°×3=1080°)

3°還有零角一條射線,沒有旋轉

三、關于“象限角”

為了研究方便,我們往往在平面直角坐標系中來討論角

角的頂點合于坐標原點,角的始邊合于軸的正半軸,這樣一來,角的終邊落在第幾象限,我們就說這個角是第幾象限的角(角的終邊落在坐標軸上,則此角不屬于任何一個象限)

例如:30°390°-330°是第Ⅰ象限角300°-60°是第Ⅳ象限角

585°1180°是第Ⅲ象限角-2000°是第Ⅱ象限角等

四、關于終邊相同的角

1.觀察:390°,-330°角,它們的終邊都與30°角的終邊相同

2.終邊相同的角都可以表示成一個0°到360°的角與個周角的和

390°=30°+360°-330°=30°-360°30°=30°+0×360°1470°=30°+4×360°-1770°=30°-5×360°3.所有與a終邊相同的角連同a在內可以構成一個集合

即:任何一個與角a終邊相同的角,都可以表示成角a與整數個周角的和

4.例一(P5略)

五、小結:1°角的概念的推廣

用“旋轉”定義角角的范圍的擴大

主站蜘蛛池模板: 泸州市| 望奎县| 大埔县| 枣庄市| 黄浦区| 武冈市| 石柱| 西宁市| 县级市| 比如县| 龙岩市| 青冈县| 红安县| 扶沟县| 佛山市| 鲁甸县| 皮山县| 轮台县| 龙岩市| 清水河县| 泰州市| 北京市| 兴安盟| 洛川县| 竹北市| 金堂县| 沅江市| 铜鼓县| 枣强县| 凯里市| 克什克腾旗| 元谋县| 新乡市| 吉木萨尔县| 绥棱县| 黄骅市| 财经| 额敏县| 米泉市| 石渠县| 全州县|