緒論:寫作既是個人情感的抒發,也是對學術真理的探索,歡迎閱讀由發表云整理的11篇傳感器設計論文范文,希望它們能為您的寫作提供參考和啟發。
隨著科學技術的發展,許多新的科學領域相繼涌現,其中微米/納米技術就是諸多領域中引人注目的一項前沿技術。20世紀90年代以來,繼微米/納米技術成功應用于大規模集成電路制作后,以集成電路工藝和微機械加工工藝為基礎的各種微傳感器和微機電系統(MEMS)脫穎而出,平均年增長率達到30%。微機械陀螺是其中的一個重要組成部分。目前,世界各個先進工業國家都十分重視對MMG的研究及開發,投入了大量人力物力,低精度的產品已經問世,正在向高精度發展。
1微機械振動陀螺儀的簡要工作原理
陀螺系統組成見圖1,它由敏感元件、驅動電路、檢測電路和力反饋電路等組成。在梳狀靜電驅動器的差動電路上分別施加帶有直流偏置但相位相反的交流電壓,由于交變的靜電驅動力矩的作用,質量片在平行于襯底的平面內產生繞驅動軸Z軸的簡諧角振動。當在振動平面內沿垂直于檢測軸的方向(X方向)有空間角速度Ω輸入時,在哥氏力的作用下,檢測質量片便繞檢測軸(Y軸)上下振動。這種振動幅度非常小,可以由位于質量片下方、淀積在襯底上的電容極板檢測,并通過電荷放大器、相敏檢波電路和解調電路進行處理,得到與空間角速度成正比的電壓信號。
在科研及加工過程中,一個重要的內容就是檢測陀螺儀的特性,如工作狀態諧振頻率、帶寬增益、Q值等,于是就提出了微機械慣性傳感器檢測平臺的研制任務。根據陀螺儀的工作原理,整個儀器包括兩大部分:驅動信號發生部分和表頭的輸出信號檢測部分。驅動信號發生部分對待測的慣性傳感器給予適當的驅勸信號,使傳感器處于工作狀態。信號檢測部分要求檢測出微小電容變化,經過放大、解調處理后,將模擬量轉換成數字量采集到PC機中,分析輸出信號,以確定慣性表的特性。
2微電容檢測技術
在MMG檢測技術中,利用電容傳感器敏感試驗質量片在哥氏力作用下的振動角位移,獲取輸入角速率信號。由于陀螺儀的尺寸微小,為了得到10°/h的中等精度,要求電容測量分辨率達到(0.01×10-15)~(1×10-18)法拉。因此,對于微機械加速度計和向機械陀螺儀來說,檢測試驗質量和基片之間的電容變化是一個關鍵技術。目前在MMG中采用的微電容檢測方案有三種:開關電容前在MMG中采用的微電容檢測方案有三種:開關電容電路、單位增益放大電路和電荷放大電路。
2.1開關電容電路
其基本原理是利用電容的充放電將未知電容變化轉換為電壓輸出。該測量電路包括一個電荷放大器、一個采樣保持電路以及控制開關的時序,如圖2所示。
在測量過程中,先將未知電容(C1、C2)充電至已知電壓Vref,然后讓其放電。充、放電過程由一定時序控制,不斷重復,使未知電容總處于動態的充放電過程。C1、C2連續地放電,電流脈沖經過電荷放大器轉換為電壓。再經過采樣保持器,得到輸出Vc。將公式ΔC=2C0·x/d0代入,可得電容檢測電路的傳遞函數為:
Vc/x=-[2VrefC0/Cfd0]
2.2單位增益放大器電路
AD公司與U.C.Berkeley聯合開發的ADXL50(5g的微機械加速度計)采用了單位增益放大電路。
圖3是單位增益放大器的等效電路。圖3中,Cp為分布電容,Cgs為前置級輸入電容,Rgs為輸入電阻。當載波頻率在放大器的通頻帶以內時,前置級輸入電阻可忽略不計。由圖3可午,前置級有用信號輸出為:
(Vs-Vout)jω(C0+ΔC)+(-Vs-Vout)jω(C0-ΔC)
=Voutjω(Cp+Cgs)+Vout/Rgs
Rgs∞
Vout=(2ΔC/2C0+Cp+Cgs)Vs
分布電容Cp約為10pF,
輸入電容Cgs約為1~10pF,一般都大于傳感器標稱電容C0(1pF左右)。可以看出,它們的存在都極大地降低了電容檢測靈敏度。要提高電路靈敏度,就必須消除Cp、Cgs的影響,通常采用的措施等電位屏蔽。
2.3電荷放大器電路
電荷放大器電路如圖4所示。它采用具有低輸入阻抗的反相輸入運算放大器。其中Cp表示分布電容,Cf為標準反饋電容,Rf用來為放大器提供直流通道,保持電路正常工作。應選取Rf,使時間常數RfCf遠大于載波周期,以避免輸出波形畸變。但Rf過大為今后電路集成帶來不便。可以使用小阻值的電阻組成T型網絡,替代大阻值電阻。
若運算放大器具有足夠的開環增益,反相輸入端為很好的虛地,那么,兩輸入端點之間的電位差為零。因此,反相輸入端對地的分布電容Cp和放大器的輸入電容Cgs對電路測量不會造成影響。電荷放大電路相對于單位增益放大電路來說,結構要簡單,不需考慮等電位屏蔽問題;只需將雜散電容的影響轉化為對地的分布電容,即進行合理的對地屏蔽,就能獲得較好的效果。
盡管在電荷放大電路中,可以忽略掉輸入電容及反相輸入端對地的分布電容,但是在檢測微小電容變化時,輸出還是有很大的衰。這是由放大器輸入輸出端分布電容Cio造成的。當載波電壓頻率大于1/(2πRfCf)和小于放大器的截止頻率時,輸出電壓Vout應該表示為:
Vout=-[(C1-C2)/(Cio+Cf)]Vs=-[(2ΔC)/Cio+Cf]]Vs
3檢測平臺的系統構成及工作原理
該系統的工作原理如圖5所示。對慣性傳感器施以適當的激勵信號后,傳感器的動片即處于振動狀態,上下極板間的電容發生周期變化,采用電荷放大器電路將該信號提取出來,經交流放大、解調后通過A/D轉換變成數字量采集到微機中,觀察傳感器的輸出響應,為下一步利用軟件方法分析微機械慣性傳感器的時域、頻域特性打下基礎。
3.1激勵信號發生器
根據微機械輪式振動陀螺儀的工作原理,最多需要4路激勵信號。激勵信號為正弦波,每兩路相位相反。為了測量陀螺儀的頻率特性,需要不斷改變激勵信號的頻率。目前不同設計的陀螺儀諧振頻率在幾百赫茲到10千赫茲之間,激勵信號也需要在這個范圍內進行調節。另外,陀螺儀的驅動力矩等于驅動信號的交流分量與直流分量的乘積,所以還要施加正或負的直流偏置,使陀螺能處于正常工作狀態。交流相位和直流偏置組合見表1。
表1交流相位和直流偏置組合
直流偏置:++--交流信號:+-+-
一般的RC振蕩電路生成的正弦波頻率靠改變R、C值來調節,不能連續大范圍調節。所以,設計中采用數字方法合成模擬波形,其原理見圖6。圖6中8254為軟件可編程計數器。其包含3個獨立的16位計數器,計數最高頻率可達8MHz,設計中輸入3MHz的時鐘,將2個計數器串連使用,這樣可以增加頻率控制范圍。8254產生的方波信號作為后面并行計數器的計數脈沖輸入。并行計數器由2片74LS161組成8位二進制循環計數器。74LS161計數到最大值時會自動清零,重新開始計數,其輸出可作為E2PROM2817A的地址信號(即每個正弦周期內采樣點數為256個)。2817A的數據讀取時間為150ns。設計電路時將它的片選和讀信號均設為有效,以提高數據讀取速度。D/A轉換采用DAC-08電流輸出型D/A轉換器。電路輸出時間85ns,放大器采用高速高精度運放OP-37,同理,D/A轉換器的片選和轉換開始信號總為有效,其輸出跟隨輸入變化,提高轉換速度。實驗結果表明,此信號發生器完全可以生成10kHz以內可調頻的正弦波。而且使用可編程計數器8254,輸出正弦波的頻率可以用軟件方法調節。如果想輸出非正弦波形,只要修改E2PROM的數據,就可以輸出任意形狀的周期波形。
3.2低通跟蹤濾波器
數字信號發生器具有控制靈活的優點,但是輸出信號不夠平滑,其中會有臺階波。在對信號要求比較高的場合,還需要進行濾波。本設計中信號的頻率變化范圍很大:幾百赫茲到10千赫茲。為了進一步提高信號質量,采用AD633模擬乘法器構成低通跟蹤濾波器,其原理如圖7。
通帶的截止頻率是由電壓Ec控制的,輸出是OUTPUTA,截止頻率:
fc=Ec/[(20V)πRC]
OUTPUTB處是乘法器的直接輸出端,截止頻率與RC濾波器相同:
f1=1/(2πRC)
這種濾波器結構簡單,沒有開關電容,噪聲小,一般采用數模轉換器控制Ec,控制通帶頻率也比較容易。
3.3交流放大器
微機械慣性傳感器在施加激勵信號后,即處于振動狀態。傳感器有差動微電容量變化C0+ΔC和C0-
ΔC。采用電荷放大器電路提取出ΔC,此電壓信號仍然很彈,需要進一步放大處理,于是采用圖8所示的交流放大器。
交流放大器由4個放大倍數為-1、-2、-5、-10的運算放大器級聯組成,進一步放大被測信號,同時調整幅值以便適應解調器的輸入。圖8中的開關選用ADG211模擬開關,通過控制模擬開關的開合,可以任意選擇某級或某幾級放大器參加工作,實現對放大倍數正負1、2、5、10、20、50、100的整倍數調整。例如,將模擬開關S0、S2、S8、S13閉合,其他開關全部打開,交流放大器的總放大器數即為:(-1)×(-2)×(-10)=-20。
3.4數據采集系統
使用計算機總線,與外設之間必須有接口。本系統采用雙端口RAM作為數據緩存。先將信號采樣并存儲其中,然后成組地向主機傳送,從而有效地發揮了主、從、資源的效率,且設計也相對簡單。
3.4.1系統工作原理
系統基本組成原理如圖9。主要有雙端口RAM、邏輯控制模塊、A/D轉換器組、計算機接口。機通過接口啟動邏輯控制模塊后,CPU資源向其他請求開放,邏輯控制模塊發控制信號啟動A/D轉換器并進行采樣,并將轉換結果存入雙端口RAM。當RAM中的數據達到一定數量時,邏輯控制模塊向計算機發出中斷請求。主機接到請求后進入中斷服務程序,向邏輯控制模塊發出命令,決定是否繼續采樣,并將RAM內的數據讀入內存。
3.4.2硬件設計
本設計使用Cypress公司的CY7C136(2k×8bit)雙端口RAM。其兩個端口都有獨立的控制信號、片選CE、輸出允許OE和讀寫控制R/W。這組控制信號使得兩個端口可以像獨立的存儲器一樣使用。使用這種器件要注意當兩個端口訪問同一個單元時,有可能導致數據讀出結果不正確。解決這個問題的方法有兩個:一種是監測busy信號輸出,當檢測到busy信號有效,就使訪問周期拉長,這是從硬件上解決;另一種方法是軟件上保證兩個端口不同時訪問一個單元,即將雙端口RAM進行分塊。本系統采用后者,將busy信號輸出通過上拉電阻接到電源正極。
在系統中,邏輯控制模塊的作用非同小可,是控制采樣、存儲、與計算機接口的核心。本系統為方便對采樣速率等參數進行設置,在該模塊中采用了MCS-51單片機。這樣可以通過編程設定采樣速率。
與主機的信息交換包括:
(1)接收主機控制信號,以決定是否開始采樣;
(2)在存儲區滿后,向主機發中斷請求。
本系統使用AT89C51的地址總線來選通RAM的存儲單元,對其進行寫操作,將采樣結果存入相應的單元。
3.4.3軟件設計
本研究以病原菌為檢測對象,通過蛋白A將病原菌抗體固定于金叉指陣列微電極表面,制備了一種阻抗型傳感器。以Fe(CN)3-/4-6作為氧化還原對,經過化學電阻抗譜表征電極表面修飾及抗原捕獲過程,采用等效電路闡述其阻抗譜的變化。實驗結果表明,待測溶液中病原菌濃度的對數值與叉指陣列微電極的電子傳遞阻抗的變化值呈線性關系。傳感器系統將上面的輸出信號進行電壓放大、A/D轉換等處理,然后由已知的定量檢測模型得出表征被測物含量的數值,并通過LCD裝置進行顯示,且可在超過安全值時進行報警。
1.2基本結構
實現定量檢測和自動報警等功能,單片機是核心部件。本設計選用STC89C52單片機,它是一種低功耗、高性能CMOS8位微控制器,可滿足系統工作的要求。該系統以STC89C52單片機為核心,包括阻抗測試模塊、阻抗電壓轉換模塊、電壓放大電路模塊、A/D轉換模塊和顯示及報警模塊。此系統采用模塊化設計不僅便于擴充不同測量單元,而且可防止各模塊間相互干擾,利于儀器穩定。
2硬件選型及電路設計
2.1集成放大器選擇
A/D轉換電路所需的電壓幅值一般為2V,而叉指微電極輸出的電壓信號比較小,所以需要對叉指微電極輸出的電壓信號進行放大。主放大電路采用放大器ICL7650,其電路具有電源電壓范圍寬、靜態功耗小、可單電源使用及價格低廉等優點,廣泛應用在各種電路中。
2.2A/D轉換模塊設計
經放大電路輸出的電壓值是模擬信號,不能直接送入單片機進行處理,還必須進行A/D轉換后送入單片機進行處理。本設計選擇ADC0809芯片作為AD轉換裝置,此芯片功能簡單,能穩定實現本設計的要求。
2.3顯示及報警模塊設計
2.3.1顯示電路設計
傳感器需要輸出液晶顯示結果,主要包括檢測物名及物質濃度等。本系統選用LCD1602液晶顯示屏,它是一種專門用來顯示字母、數字、符號等的點陣型液晶模塊,能夠同時顯示16×2(16列2行,即32個)字符,可滿足顯示檢測物名稱和濃度的要求。
2.3.2報警電路設計
為了實現超限自動報警的功能,需要蜂鳴器接受單片機發出的超限報警信號發出警報,警示微生物的數量已經超標。要實現自動報警的功能,可采用實現單頻音報警。其接口電路較簡單,發音元件為壓電蜂鳴器,當在蜂鳴器兩引腳上加3~15V直流工作電壓時,可產生3kHz左右的蜂鳴振蕩音響。壓電式蜂鳴器結構簡單、耗電少,更適于在單片機系統中應用。壓電式蜂鳴器約需10mA的驅動電流,可在單片機一端口接一只三極管和電阻組成的驅動電路來驅動。濃度超標時,單片機P3.6輸出高電平,驅動蜂鳴器報警,提醒檢測者被測物超標,并做相應處理。
3軟件設計
為了便于程序修改和升級,軟件系統采用模塊化設計方法,主要程序包括:主程序、鍵盤處理子程序、數據處理子程序、液晶顯示子程序及報警子程序。系統工作流程為:檢測人員通過鍵盤輸入被測物種類,MCU通過判斷處理之后,阻抗測試儀測量獲得多個阻抗值,經阻抗電壓轉換電路和放大電路,A/D轉換器處理,將得到的數字信號送入MCU;MCU對數字進行計算、比較等處理,得到被測物濃度,判斷出濃度是否超限;接著,MCU將濃度送入LCD進行顯示,判斷比較結果是否需要進行報警,需要時則控制報警器報警。
引言
隨著微電子工業的迅速發展,單片機控制的智能型控制器廣泛應用于電子產品中,為了使學生對單片機控制的智能型控制器有較深的了解。經過綜合分析選擇了由單片機控制的智能型液位控制器作為研究項目,通過訓練充分激發學生分析問題、解決問題和綜合應用所學知識的潛能。另外,液位控制在高層小區水塔水位控制,污水處理設備和有毒,腐蝕性液體液位控制中也被廣泛應用。通過對模型的設計可很好的延伸到具體應用案例中。
一、系統設計方案比較說明
對于液位進行控制的方式有很多,而應用較多的主要有2種,一種是簡單的機械式控制裝置控制,一種是復雜的控制器控制方式。兩種方式的實現如下:
(1)簡單的機械式控制方式。其常用形式有浮標式、電極式等,這種控制形式的優點是結構簡單,成本低廉。存在問題是精度不高,不能進行數值顯示,另外很容易引起誤動作,且只能單獨控制,與計算機進行通信較難實現。
(2)復雜控制器控制方式。這種控制方式是通過安裝在水泵出口管道上的壓力傳感器,把出口壓力變成標準工業電信號的模擬信號,經過前置放大、多路切換、AD變換成數字信號傳送到單片機,經單片機運算和給定參量的比較,進行PID運算,得出調節參量;經由DA變換給調壓變頻調速裝置輸入給定端,控制其輸出電壓變化,來調節電機轉速,以達到控制水箱液位的目的。
針對上述2種控制方式,以及設計需達到的性能要求,這里選擇第二種控制方式,同時考慮到成本需要把PID控制去掉。最終形成的方案是,利用單片機為控制核心,設計一個對供水箱水位進行監控的系統。根據監控對象的特征,要求實時檢測水箱的液位高度,并與開始預設定值做比較,由單片機控制固態繼電器的開斷進行液位的調整,最終達到液位的預設定值。檢測值若高于上限設定值時,要求報警,斷開繼電器,控制水泵停止上水;檢測值若低于下限設定值,要求報警,開啟繼電器,控制水泵開始上水。現場實時顯示測量值,從而實現對水箱液位的監控。
二、工作原理
基于單片機實現的液位控制器是以AT89C51芯片為核心,由鍵盤、數碼顯示、AD轉換、傳感器,電源和控制部分等組成。
工作過程如下:水箱(水塔)液位發生變化時,引起連接在水箱(水塔)底部的軟管管內的空氣氣壓變化,氣壓傳感器在接收到軟管內的空氣氣壓信號后,即把變化量轉化成電壓信號;該信號經過運算放大電路放大后變成幅度為0~5V標準信號,送入AD轉換器,AD轉換器把模擬信號變成數字信號量,由單片機進行實時數據采集,并進行處理,根據設定要求控制輸出,同時數碼管顯示液位高度。通過鍵盤設置液位高、低和限定值以及強制報警值。該系統控制器特點是直觀地顯示水位高度,可任意控制水位高度。
三、硬件設計
液位控制器的硬件主要包括由單片機、傳感器(帶變送器)、鍵盤電路、數碼顯示電路、AD轉換器和輸出控制電路等。
3.1單片機
單片機采用由Atmel公司生產的雙列40腳AT89C51芯片。
3.2傳感器
傳感器使用SY一9411L—D型變送器,它內部含有1個壓力傳感器和相應的放大電路。壓力傳感器是美國SM公司生產的555—2型OEM壓阻式壓力傳感器,其有全溫度補償及標定(O~70℃),傳感器經過特殊加工處理,用堅固的耐高溫塑料外殼封裝。在水箱底部安裝1根直徑為5mm的軟管,一端安裝在水箱底部;另一端與傳感器連接。水箱水位高度發生變化時,引起軟管內氣壓變化,然后傳感器把氣壓轉換成電壓信號,輸送到AD轉換器。
3.3鍵盤電路
P1口作為鍵盤接口,連接一個4×4鍵盤。
3.4液位顯示電路
液位顯示采用數碼管動態顯示,范圍從0~999(單位可自定),選擇的數碼管是7段共陰極連接,型號是LDSl8820。在這里使用到了74LS373,它是一個8位的D觸發器,在單片機系統中經常使用,可以作地址數據總線擴展的鎖存器,也可以作為普通的LED的驅動器件,由于單獨使用HEF4511B七段譯碼驅動顯示器來完成數碼管的驅動顯示,因此74LS373在這里只用作擴展的緩沖。
3.5AD轉換電路及控制輸出
AD轉換電路在控制器中起主導作用,用它將傳感器輸出的模擬電壓信號轉換成單片機能處理的數字量。該控制器采用CMOS工藝制造的逐步逼近式8位AD轉換器芯片ADC0809。在使用時可選擇中斷、查詢和延時等待3種方式編制AD轉換程序。控制輸出主要有上下限狀態顯示、超限報警。另外在設計過程中預留了串行口,供進一步開發使用。
四、軟件設計
4.1鍵盤程序
由于鍵盤采用的是4×4結構,因此可使用的鍵有16個,根據需要分別定義各鍵,0~9號為數字鍵,10~15號分別是確定鍵、修改鍵、移位鍵、加減鍵、取消鍵和復位鍵。
值得注意的是,在用匯編語言編寫控制器程序時,相對會比較麻煩,如果用C語言編寫程序會簡單很多,這里就不再做具體說明。
五、結束語
基于單片機實現液位控制器模型設計的關鍵在于硬件電路的正確構建,只有在電路準確的前提下再進行軟件編程才能取得成功。
參考文獻:
引言
隨著機器人技術和復雜檢測系統的出現,人們對觸覺傳感器提出了更高的要求。隨著觸覺陣列規模的擴大,希望A/D轉換速度加快,而原先在小規模陣列觸覺傳感器系統中采用的共用A/D轉換器的方法,已不能滿足大規模陣列觸覺傳感器信號采集實時性的要求。因此,要想實現高速、高分辨率并且對小信號敏感的大規模陣列觸覺傳感器信號采集系統,關鍵部件就是A/D轉換器。
本文利用混沌帳篷映射方法和開關電容(SC)技術,設計了一種新型A/D轉換器。該A/D轉換器的電路具有調理放大、誤差補償和A/D轉換功能一體化的優點,并且電路簡單、便于集成、功耗小;能以很高的性能價格比實現多路觸覺傳感器輸出信號的并行采樣和A/D轉換。
1陣列觸覺傳感器信號采集系統的組成
模擬式陣列觸覺傳感器信號采集系統的原理電路見圖1。該系統由m×n陣列傳感器、列讀取電路、行掃描電路、n個ADC電路、時序控制電路和計算機等組成。在時序控制電路的控制下,行掃描電路對m行陣列觸覺傳感器發送周期性激勵信號;而列讀取電路則周期性地并行讀入n列輸出信號。讀n個信號經n個A/D轉換器,把模擬信號轉換成格雷碼序列直接送到計算機;計算機完成格雷碼向二進制碼的轉換,接著在時序邏輯的控制下,讀取下一行的n列信號并進行A/D轉換。計算機在獲得1幀m×n觸覺傳感器信號后,就可以進行信號處理了。圖1中除A/D轉換器需要特殊設計外,其余各電路都有現有的產品,沒有特殊要求。
2混沌開關電容A/D轉換器的設計
2.1混沌開關電容A/D轉換的原理
利用開關電容技術進行誤差補償的基本原理是電荷的再分配。電容失配誤差利用開關轉換儲存起來,結果由電容上電荷的再分配而得到補償。混沌帳篷映射是一種離散非線性系統,其映射關系為:
這一映射可以看到由兩步組成:先將區間[0,1]伸長2倍,然后再壓縮成原區間[0,1]。如此反復迭代操作,最終導致相鄰點的指數分離,從而進入混沌狀態。這種映射對初始值(系統的輸入信號)的放大與通常的線性放大方法不同:線性放大倍數為一常數,而且受工作范圍限制;而處于混沌狀態的帳篷映射系統,是在有界的區間內,迭代1次將信號放大2倍,反復有限次迭代后,可以將微弱信號放大到可觀測的水平,而不會出現溢出再現象。顯然,這是一種非線性放大。帳篷映射系統的輸入值Vin對應于系統的初始狀態x0。x0可以二進制小數表示:
為了得到離散帳篷映射的迭代輸出與x0的關系,引入另一種非線性映射——離散貝努利移位是映射:
這一映射的作用是每迭代一次,就將二進制位t1、t2、t3、……向左依次移出一個二進制位,即
對于貝努利移位映射,令bn=sgn(x''''n-0.5),作為貝努利移位映射的第n次迭代輸出,由于bn=tn,且bi(i=0,1,2,…)是一個二進制序列;對于帳篷映射,令gn=sgn(xn-0.5),則gi是與bi對應的格雷碼序列,即
根據上述和初始時刻x0=x''''0=Vi,可得:
因此,通過將帳篷映射迭代輸出的格雷碼序列gi(i=0,1,2,…),轉換成貝努利移位映射的二進制序列bi(i=0,1,2,…),可推算出初始值(輸入信號的二進制數字量),即
式(7)中{Vin}表示輸入信號的二進制數字量。gi(i=0,1,2,…)就是經過帳篷映射完成了對輸入信號的非線性放大和A/D轉換的格雷碼形式的數字量。
2.2混沌開關電容A/D轉換電路的實現
利用并關電容技術進行電路設計,有其獨特的優點:電路的性能與電容無關,只取決于電容之比,兩個電容比值的誤差小于1/1000,因此電路運算精度高;電路便于實現大規模集成,因而電容體積小、工作可靠、成本低,功耗小(一個開關電容A/D轉換器功耗4mW)等。這些優點對模擬式陣列觸覺傳感器信號采集系統最有利,因此該系統需要大量的ADC。
圖2混沌開關電容A/D轉換電路
基于帳篷映射的開關電容A/D轉換電路如圖2所示。運放A1、A2及周圍的電路完成帳篷映射,即完成對輸入信號的非線性放大和A/D轉換;C4、C5、A3及周圍的電子模擬開關組成保持電路,輸出信號V0為輸入信號的格雷碼形式的數字量。圖3為電路時序控制邏輯。
圖2電路,當啟動信號為高電平時,電子模擬開關指向“1”端,輸入信號Vi接通。延時t1時間后,D觸發器產生一個脈沖信號,這時,若0≤Vi≤0.5,則電子模擬開關S1指向“2”端,C1、C3和A2及有關的電子模擬開關構成一個開關電容比例延時器,如圖4所示。在(n-1)T時,Vi給C1充電,充電電荷為C1Vi(n-1),C3被短路,V02(n-1)=0;在nT時,C1中電荷轉移到C3中,充電電荷為C3V02(n),由電荷守恒原理,其差分方程為:
C1Vi(n-1)=C3[V02(n)-V02(n-1)]=C3V02(n)(8)
式(8)經過Z變換可得該電路Z域傳遞函數:
H(Z)=V02(Z)/Vi(Z)=(C1/C3)Z-1(9)
若取C3=0.5C1,則有:
H(Z)=V02(Z)/Vi(Z)=(C1/C3)/Z-1=(C1/0.5C1)Z-1=2Z-1(10)
可見,圖4的電路具有起放大作用的比例延時功能,實現了對輸入信號的翻倍,即實現了y=2x的運算;同時對C4充電,當下一個“o”脈沖為高電平時,C4中電荷轉移到C5中,這時開關S0指向“2”端,把輸出信號Vo反饋到輸入端,給C1充電,實現迭代運算。經過n次迭代后,使Vi信號入大,直到可觀測為止。
同理,當0.5≤Vi≤1時,Vi向C2充電,電子模擬開關S2指向“2”端,這時,C2、C3和A2構成另一個開關電容比例延時器,把式(9)中的C1換成C2,就是這個比例延時器的Z域傳遞函數。“e”脈沖為高電平時,C2中電荷Q=C2Vi轉換到C3中,若取C3=0.5C2,就實現了y=2(1-x)的運算;當下一個“o”脈沖為高電平時,C4中電荷轉移到C5中,這時開關S0指向“2”端,把輸出信號Vo反饋到輸入端,給C2充電,實現迭代運算。經過n次迭代后,使Vi信號放大到可觀測為止。
這樣,經過一個周期T,完成了對Vi一個樣點的采集。如此周而復始地進行A/D轉換工作。D觸發器輸出的信號就是格雷碼序列:
將gk序列和初始條件b0=Q0代入式(6)中,就得到貝努利二進制序列bk(k=0,1,2,…)。當然,只要把ADC的輸出信號Vo(格雷碼序列)送入計算機,轉換成二進制數字量的工作,可由計算機通過軟件來實現。
3實驗結果
利用圖4的信號系統對5×7應變式微型陣列傳感器輸出的信號進行非線性放大和A/D轉換實驗,實驗結果見表1。表1中為第4行7個傳感器輸出信號進行A/D轉換的結果。實驗結果表明,基于帳篷映射的開關電容A/D轉換器可有效地實現對小信號的放大和A/D轉換。
4結論
本文利用混沌電路對小信號敏感及它具有的非線性變換的獨特性能,設計了混沌帳篷映射開關電容新型A/D轉換器。這種A/D轉換器適用于機器人模擬陣列觸覺傳感器輸出信號的A/D轉換。它集調理放大和A/D轉換于一體,具有電路簡單、易于集成及功耗小的特點。開關電容電路只有二相時鐘,電路性能只取決于兩個電容之比而與電容絕對值無關,因而電路運算精度高、成本低。利用該A/D轉換器可實現多路觸覺信號的并行采樣和A/D轉換,以滿足大規模陣列傳感器信號的實時采集要求。實驗結果證明了本方法的有效性。
表1A/D轉換實驗結果
傳感器(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(4,7)
測量值/mV0806718824617025
計算值/mV0.080.266.4187.5242.3168.924.7
格雷碼
互聯網iso論文參考文獻:
[1]任剛.新媒體時代的傳統媒體如何應對挑戰[J].科技信息.2013(04)
[2]牟宗友.互聯網傳媒與文化傳承的關系研究[J].中國市場.2016(15)
[3]鄔政.傳統媒體如何成為“互聯網+”的受益者——淺析傳統媒體融媒時代的轉型定位[J].中國地市報人.2015(05)
[4]候金鳳.移動互聯網下手機用戶使用行為特征的研究[J].電腦知識與技術,2016(7).
[5]曾青菲.基于用戶體驗的互聯網產品差異化設計探究[J].藝術教育,2016(7).
[6]周鴻祎.我的互聯網方法論[M].北京:中信出版社,2015.
互聯網iso論文參考文獻:
[1]中國互聯網絡中心(CNNIC).第29次中國互聯網絡發展狀況統計報告[R]}2012年1月.
[2]淘寶網.淘寶公告,http://bbs.taobao.com.
[3]百度百科.http://baike.baidu.com/view/5052997.htm.
[4]魏宏.我國B2C電子商務現狀及問題分析.標準科學[J].2004(8):52-54.
[5]黎軍,李瓊.基于顧客忠誠度B2C的網絡營銷探.討中國商貿[J].2011(5):34-35.
[6]沃德·漢森.網絡營銷原理[M].北京:華夏出版社,2001:5.
[7]RaftA.M}Robertj.&FishersB.InternetMarketingBuilding[J].QuarterlyJournalofEconomics2004,9(12):49-68.
[8]戴夫,查菲.網絡營銷戰略、實施與實踐[M].機械工業出版社,2006:4.
[9]王耀球,萬曉.網絡營銷[M].北京:清華大學出版社,2004:2.
[10]凌守興,王利鋒.網絡營銷實務[M].北京:北京大學出版社,2009:4.
互聯網iso論文參考文獻:
[1]張軍國.面向森林火災監測的無線傳感器網絡技術的研究[D].北京林業大學,2010.
[2]葉僉昱.無線傳感器網絡中的信息壓縮與路由技術研究[D].北京郵電大學,2009.
[3]王懌.水下傳感網時鐘同步與節點定位研究[D].華中科技大學,2009.
[4]高峰.基于無線傳感器網絡的設施農業環境自動監控系統研究[D].,2009.
[5]許華杰.無線傳感器監測網絡環境不確定性數據處理研究[D].華中科技大學,2008.
[6]馬奎.無線傳感網移動接入與信息獲取優化策略研究[D].中國科學技術大學,2008.
[7]李莉.無線地下傳感器網絡關鍵技術的研究[D].北京郵電大學,2008.
[8]李石堅.面向目標跟蹤的自組織傳感網研究[D].浙江大學,2006.
0.引言:
傳感器在現代信息技術中有著舉足輕重的地位,傳感器為系統提供進行處理和決策所必需的原始信息,很大程度上影響和決定著系統的性能,本設計采用以單片機為控制單元,用單軸傾角傳感器檢測平衡板傾斜角度,采取步進電機控制平衡板角度自動旋轉目的。
1.硬件電路設計
角度傳感器硬件連接圖如圖1所示,當步進電機帶動平衡板傾斜到使角度傳感器SCA60C處于水平位置時,Vo端輸出+0.5V的模擬電壓。傳感器SCA60C僅可精確檢測到0~90度的角度范圍,當平衡板轉到使角度傳感器與水平面成90度的角度時,此時Vo端輸出+5V的模擬電壓。在0~90度的傾角范圍內,Vo端輸出的是正比于傾角大小的+0.5~+5V的模擬電壓信號,當平衡板轉動到使角度傳感器與水平面間的角度從90度到180度的范圍變化時,輸出端Vo輸出的是從+5V依次變化到+0.5V 的模擬電壓信號[1][2],因此通過測定傳感器SCA60C輸出端Vo電壓的大小即可確定平衡板與水平面的夾角。
步進電機驅動電路的設計本系統中,我們選擇4相5線步進電機,其驅動電路主要由L297+L298組成,該驅動電路集驅動與保護于一體。L297是脈沖分配器,只要步進電機A、B、C、D四項依次連接到J1的1、2、3、4各點,且將剩下的一條線接地,L297就會自動的將輸入到端口CW/CCW的脈沖分配給步進電機的各個相序,此時步進電機便可轉動[3][4]。控制電機時只需單片機通過I/O口向L297的cw/ccw和clock端發送控制信號即可控制它的轉速和正反轉。驅動電路原理如下圖2。論文參考。論文參考。
圖1角度傳感器硬件連接圖圖2步進電機驅動電路原理圖
本系統主要由主控制器模塊、角度檢測模塊、A/D轉換模塊、鍵盤模塊和顯示器模塊等部分組成,系統連接圖如圖3所示:
圖3系統框圖
系統分為兩個工作模式,工作于模式一時,可通過鍵盤模塊預置一個角度,主控制器接收到此信息后,通過控制電機控制模塊來使角度檢測模塊做出轉動動作以使平衡板按輸入角度完成傾斜動作。同時,角度傳感器輸出的模擬量經A/D轉換模塊轉換后送入主控制器,主控制器據此輸入判定平衡板是否已傾斜到預置的角度,并據此來控制電機控制模塊,并且主控制器模塊通過控制顯示模塊實時的顯示平衡板的傾斜角度。通過按鍵模塊可將系統切換到模式二,模式二的功能是能始終保持平衡板的水平,且能使顯示模塊顯示的內容與平衡板聯動,兩種工作可通過按鍵來切換。系統使用c8051f00作為控制核心,128*64作為顯示器,4*4鍵盤來輸入需要預置的角度。程序具有角度預置和自動尋找平衡點兩種模式,根據不同需要選擇,具有友好人機界面,操作簡單易懂。軟件流程圖如下圖4所示:
圖4 程序流程圖
2.系統測試與分析
表1系統性能測試
基本要求測試 發揮部分測試 輸入角度大小 平衡時角度 誤差 起始傾斜角度 平衡時角度 誤差 30o 29.07 o
0.70% 14 o
0 o
0 65 o
65.6 o
0.90% 32 o
0.3 o
0.90% 94 o
94.2 o
0.20% 80 o
0.3 o
0.38% 110 o
110.4 o
0.36% 76 o
0.7 o
0.92% 176 o
175.7 o
中圖分類號:G642文獻標識碼:A文章編號:1009-3044(2007)18-31739-01
Experimental Teaching Reform of Sensors Course
ZHANG Huai,Chen Fu-jun,YANG Yong,LIANG Feng
(Huanghuai University,Zhumadian 463000,China)
Abstract:Sensors is a most practical course, the students can verify theories through an experiment, and can strengthen the cultivation of the student’s innovation and practice ability. Aimed at the present situation of the experimental teaching for sensor of our university, we do some beneficial reform and the aim is to improve the practice ability of students and cultivate the innovative talents.
Key words:sensor experiment;teaching reform;cultivation of innovative talents
傳感器技術作為現代三大信息技術之一,廣泛應用于工農業生產及日常生活中,是測控過程中反映被測對象、保證控制質量的重要一環,也是自動化、測控技術、機械電子等專業的一門實踐性和應用性很強的基礎課。隨著計算機技術,信息技術和網絡技術的發展,傳感器技術與應用也飛速發展,而傳統的傳感器教學尤其是實踐環節的教學迫切需要改革創新。為此,針對我校傳感器實驗教學的現狀做一些有益的改革,旨在提高學生對傳感器原理及特性的理解并進而達到設計和應用的目的,培養高素質技能型人才。
1 我國傳感器及實驗教學的發展及需求
傳感器及智能儀器儀表自上個世紀60年代以來一直作為自動化、測控技術、機械電子等專業的一門專業課程,特別是進入80年代后,國際上出現了“傳感器熱”:日本把傳感器技術列為80年代十大技術之首,美國把傳感器技術列為90年代的關鍵技術,我國把傳感器技術列為“八五”、“九五”的重點研究項目之一;并且2003年3月國家教育部緊跟國際科技發展步伐,已將傳感器的教學納入到普通高級中學物理課程的教學體系中。由此可見,傳感器在當今科技發展及國民教育體系中所處的重要地位。而對于傳感器本身又是一門實踐性和應用性很強的學科,而且傳感器實驗教學是整個教學環節中的一個重要子系統,因此,加強傳感器實驗教學以適應我國高等教育的任務――培養學生創新精神和實踐能力的需求。
2 傳感器實驗教學的現狀
長期以來,理論教學重于實驗教學的觀念根深蒂固,影響了傳感器教學的效果。傳統的傳感器教學尤其是實踐性環節迫切需要改革創新。傳統的傳感器實驗教學的問題主要反映在以下幾個方面:
2.1教學中存在不重視實驗的傾向
實驗教學是理論知識和實驗活動、間接經驗與直接經驗、抽象思維和形象思維、傳授知識與訓練技能相結合的過程。但是,對傳感器實驗教學現狀的調查結果表明,目前很多高校在教育觀念上,仍存在著重理論、輕實踐,重理論知識傳授、輕動手能力培養的傾向,在課程體系上,實驗教學少有獨立的教學體系以及相應的學分評價體系,實驗課從屬于理論課,實驗內容含在理論課程中,實驗學時與內容的開設隨意性強,隨意削減實驗學時成為普遍現象,實驗課時同理論課時比例不太合理等問題,從而大大影響了學生對傳感器特性的理解及在傳感器應用中解決實際問題能力的培養。
2.2實驗項目驗證型多于設計型
目前,我系使用的傳感器實驗裝置是由浙江高聯科技開發公司提供的CSY2000D型傳感器檢測技術實驗臺,它所提供的實驗項目大多為驗證性實驗,雖然各傳感器透明式封裝比較直觀,但缺乏設計性、綜合性要求,與工程實踐脫節嚴重。
2.3教學方式單調枯燥
傳統的傳感器實驗教學是注入式的,從實驗原理、步驟、實驗注意事項,甚至連實驗結果都面面俱到地由老師講解,然后由學生“按方抓藥”地操作。這使學生處于消極被動的地位,影響其學習主觀能動性的發揮,嚴重阻礙了學生的全面綜合素質的培養。
2.4實驗經費投入不足
實驗室建設對各高校來說是一項重要的投資,特別是對于一般的普通高校在資金有限的情況下,對實驗室的建設投入更少;而傳感器又是精密測量儀器,一般單個售價都在50元以上,我系于2003年購置的6臺CSY2000D型傳感器檢測技術試驗臺就高達1.83萬元/臺。因此,在資金緊張的情況下,使得高校擴招后由原來的一名學生一臺設備,改為2~3人一組,這樣在實驗過程中往往一個學生做,同組人旁觀,教學效果很不理想。
3 改革與探討
實驗教學是高等院校教學的重要組成部分,是對課堂所學理論知識的直觀認識和拓展應用,是學生理論聯系實際的重要途徑,它在培養學生綜合素質和創新能力方面有著不可替代的重要作用。因此傳感器實驗教學必須從理論教學中解脫出來,實驗教學應與本課程特點緊密結合,做一次全面的改革:
3.1深化傳感器實驗教學改革,著力培養學生動手能力
為推進我國全面的素質教育,培養學生創新精神和實踐能力,根據傳感器實驗教學的現狀和面臨的問題,充分調研,對目前的傳感器實驗教學進行全面改革:從本科培養計劃的約束,到實際實驗教學的實施;從教師的教學觀念,到學生的實驗的目的等各方面都要充分認識到傳感器實驗在傳感器教學中的重要性,在實際實驗教學中不斷培養學生獨立的操作動手能力。
總體上說,注重引導,加強實驗考核,使學生普遍對實驗重視程度提高,能主動預習準備實驗,甚至帶著問題進實驗室,學生的動手能力明顯增強。
3.2切實加強傳感器實驗室基礎建設和科學管理制度
實驗器材是開展實驗教學活動的基礎平臺,雖然傳感器實驗器材價格相對較貴,但也應逐漸增加傳感器實驗室經費的投入,除了確保正常的教學實驗所需各項經費外,還要投入一定經費改進和完善現有儀器設備。同時,還要加強實驗室科學管理制度的建設,現在各高校的實驗室管理專職人員緊缺,一般由理論課老師來擔任實驗的教學和實驗室管理,其間存在管理漏洞,儀器損壞無法及時維修,嚴重影響實驗教學的開展。因此,傳感器實驗室要根據本學科的特點和自身條件建立切實可行的實驗室管理制度和實驗操作規程,逐漸形成較為完整的實驗教學管理和保證體系。
3.3加快傳感器實驗教材的編寫
實驗教材是提高實驗教學質量的重要環節。傳感器實驗是近幾年才在各高校普遍開設,據調查現階段各高校采用的傳感器實驗教材都是在廠家提供的儀器使用指南的基礎上編寫的講義,缺乏規范性、普適性。根據高校實驗教學改革和本學科發展的現狀更新充實實驗教學內容和教學方法,編寫配套的、高水平的傳感器實驗教材是刻不容緩的。
3.4改革傳感器實驗教學的內容及方法
3.4.1實驗教學內容的改革
為了突出實踐教學,培養學生的應用意識、工程實踐能力,使學生“消化理論、發展能力”我們對該課程的實驗內容進行了較大改革:一方面保留了一些基礎驗證性實驗,如電阻應變、電渦流位移特性、光纖傳感器位移特性實驗等,使學生通過這些實驗,理解傳感器的基木原理和特性,消化教學內容;另一方面開設一些設計性實驗,如我們利用電阻應變片設計了數字電子秤,以及結合單片機知識設計出自動避障小車和全自動洗衣機控制器等,通過學生自己制作出一些小產品模型,使學生進一步認識到課堂中學過的傳感器在其中的限位、距離檢測等作用。在教學過程中除了要求學生寫出實驗報告外還要求撰寫設計論文,這樣更能夠將設計思想、方案論證、技術路線等一些列創造性工作反映出來,同時還可鍛煉學生的總結能力,為將來撰寫科技論文奠定基礎。
3.4.2實驗教學方法的改革
實驗課是驗證理論、應用理論、鍛煉學生動手能力的重要環節。在實驗指導的方法上,我們進行了一些改革探索,在實驗指導過程中,注意因材施教,采用啟發式教學方法,提示學生是否有更好的改進方法等等。如電阻應變實驗中對電子秤標定時反復調節Rw3、Rw4直至托盤空時電壓表顯示為0v、200g砝碼時顯示為0.2v。反復調節最終是可以達到要求,當學生反復調節幾次沒達到預期要求時可能不耐煩了,這時提示學生根據電阻應變式傳感器的測力原理及輸入輸出特性――線性關系,分析電路中Rw3、Rw4的作用可以看出Rw3起調節放大倍數――即線性關系中的斜率、Rw4起零點參考電壓調節――線性關系中的初始值的作用,經過這樣比較對應后,很快可以得出這樣的快速調節方法:當托盤空時,調節Rw4使電壓表顯示為零;然后將10個砝碼全放入托盤,調節Rw3使電壓表顯示為0.2v;然后去掉全部砝碼記下此時電壓表讀數v0 (如0.002v);再將砝碼全放入托盤調節Rw4使電壓表顯示為0.2-v0(如0.198v);最后再調節Rw3使電壓表顯示為0.2v即可。通過像這個實驗一樣的實驗教學方法改革,我們認識到如果在每次實驗指導中都能夠采用啟發式的方法啟迪學生,發展學生的發散思維能力,那么一定能使學生舉一反三,達到學以致用的目的,同時還可激發學生的創新興趣。
3.5建立科學的實驗考核方案
成績評定方式對于實驗教學十分重要,它是這次傳感器實驗教學改革實施的總體指揮棒。學生最關心的就是成績,我們要充分利用這一法寶設計較為合理的考核方案,既能達到考察的目的,同時使學生通過試驗不僅能很好理解理論知識,還可以培養學生的動手、創新能力。為此,將成績評價定位在是否理解并靈活應用所學知識,以及鼓勵創新思想和創新實踐過程,而不僅僅是結果正確與否。在總結多年實驗課經驗的基礎上,采用兩種結果驗收相結合的形式,一種形式是當面驗收,通過演示和口頭介紹展示實驗過程及實驗效果,并完成高質量的實驗報告(包括利用VC、vb、matlab等軟件實現對測量數據的分析及相應的改進措施和仿真),這種方式是學生實踐活動結果的直觀體現;另一種形式是提交撰寫設計論文,相對與前者,這種形式更能夠將設計思想、方案論證、技術路線等一些列創造性工作反映出來,同時還可鍛煉學生的總結能力,為將來撰寫科技論文奠定基礎。學生的最終實驗成績是這兩部分成績的綜合。
4 結束語
關于傳感器實驗課教學改革涉及面廣,環節多,是個比較復雜的問題。我們只是在這方面做了一些有益的嘗試,并取得了一定的成功經驗。我們改革的目的很明確,就是要讓學生感覺到每一個實驗都是一次挑戰,要想取得成功必須要有充分的準備、嚴謹的態度、細致的操作和靈活的思維。每一次實驗的完成,不僅要讓學生的實驗能力得到充分的訓練和提高,更重要的是要激發學生的主觀能動性和創造性。只有這樣才能為國家培養出具有較高的全面素質的一流人才。
參考文獻:
1 引言
目前,水資源的管理和節約成為世界性的難題。在控制人們意識上浪費的同時,各種節水設備也應運而生。目前大多都是著眼于用水節約和效率,卻忽視了廢水的循環使用。為此,本文基于“綠色設計”的原則,設計了一種基于單片機控制的家庭智能節水系統,最大限度的做到“水盡其用”。
2 智能節水系統設計思路
該設計用MCS-51單片機作為控制電路的核心控制部件來構成控制器,單片機輸出不同程序信息,經過移位寄存器74LS164驅動,使得數碼管顯示相應內容,紅外傳感器以及混濁度傳感器和水位傳感器檢測到的模擬信號經過8位模數轉換器ADC0809轉變成數字信號寫入單片機,經過單片機處理再把數字信號經過8255A送給電磁閥電路和繼電器電路,控制其工作與否。從結構來說該設計包括A/D轉換和擴展I/O口。輸入部分包括按鍵設置、水位傳感器、渾濁度傳感器和紅外傳感器。輸出部分包括LED顯示、繼電器驅動電路、電磁閥驅動電路和發光二極管。系統設計框圖如圖1所示:
圖1 系統設計框圖
3 智能節水系統硬件選擇
家庭節水系統通常包括4個主要構成部分,分別是收集器、處理器、儲存器和供給器。系統中要用水位傳感器和渾濁度傳感器及多個電磁閥、繼電器等,既有模擬量又有數字量。
3.1單片機的選取
ATMEL公司的89系列單片機也稱Flash單片機是以8031為核心構成,它和 INTEL公司的MCS-S1系列單片機完全兼容,擴展了它的功能。89系列單片機存在下列很顯著的優點:
(1)內部含Flash存儲器;(2)和AT80C51插座兼容;(3)靜態時鐘方式;
(4)錯誤編程亦無廢品產生;(5)可反復進行系統試驗。
鑒于以上的優點,經過分析比較,根據本系統的特點,選用ATMEL公司89系列的標準型單片機AT89C51。其片內含有128字節的數據存儲器(RAM)和4K字節的可電擦電寫閃爍程序存儲器E2PROM,這足以滿足系統實現其功能。
3.2模數轉換芯片
在眾多的轉換器中以逐次逼近式A/D轉換器的性價比最高,應用最廣泛,國內使用較多的芯片有ADC0808/0809,ADC0801-ADCO805及ADC0816/0817和AD574等,根據本系統的特點和要求選用中速、低廉的逐次逼近式ADC0809模數轉換芯片。它包括一個高阻抗斬波比較器;一個帶有256個電阻分壓器的樹狀開關網絡;一個邏輯控制環節和8 位逐次比較寄存器(SAR);一個8位三態輸出緩沖器。
該系統中ADC0809與AT89C51單片機的連接如圖2所示,采用等待延時方式。論文大全。ADC0809的時鐘頻率范圍要求在10-1280kHz。ADC0809的CLOCK腳的頻率是單片機時鐘頻率的1/6,因此當單片機的時鐘頻率采用6MHz。ADC0809輸入時鐘頻率即為CLOCK=1MHz,發生啟動脈沖后需延時100μs才可讀取A/D轉換數據。
圖2 模數轉換電路
3.3 按鍵的識別和輸出顯示
常用的鍵盤有陣列式鍵盤、獨立式鍵盤。本設計中有4個按鍵,不必采用陣列式,而采用獨立式鍵盤鍵接一個上拉電阻與P1口的一個管腳連接。對于按鍵的識別,有動態掃描和中斷兩種方式,在該設計中,按鍵的使用并不是很頻繁,所以采用了中斷的方式進行按鍵的識別.
對于輸出,有動態并行輸出、LCD液晶顯示屏和靜態譯碼輸出三種方式。水箱中的液位要提供給用戶,采用了最簡單的八段數碼管作為顯示部分的硬件電路。該設計中只用到兩個數碼管顯示,不會占用很多硬件資源,所以采用了靜態顯示。這樣在發光二極管導通電流一定的情況下,顯示器的亮度大,而且顯示穩定。在輸出方式上,由于對數碼管響應速度不高,采用了串行移位的方式。這里采用74LS164進行顯示驅動。
3.4電磁閥與繼電器的控制
為使系統安全、穩定,采用了24V電磁閥和12V 繼電器。由于電磁閥不能直接與單片機相連,采用了光電隔離,再通過IRF 530進行驅動。繼電器的驅動采用的是最簡單的方法,即三極管驅動,通過I/O腳電平的翻轉來對電磁閥進行開/關控制。論文大全。電磁閥開關動作的控制脈沖寬度可選為30ms。其控制電路如圖3所示。
圖3 電磁閥控制電路
3.5渾濁度傳感器、液位傳感器和紅外傳感器
APMS-10G渾濁度傳感器可以根據溶液含有的雜質、灰塵的顆粒大小、密度不同,產生光電經濾波后輸出即得到渾濁度檢測信號。采用AT89C51單片機與APMS-10G渾濁度傳感器通信,讀出渾濁度值,再將數據通過串行口傳給主機,采用可控三態門74LS125將兩路串行通道隔離,通過可控端分時使用,當P17輸出高電平時,與APMS-10G的通道導通;當P17引腳低電平時,與主機的通信回路導通。從機串口平時與主機保持通信暢通,將串口設為中斷狀態,隨時可以接收主機發來的指令。
眾多的的傳感器當中。諧振式水位傳感器采用了先進的傳感原理,高Q值的諧振電路,具有較強的抗干擾能力、結構靈巧、精密、簡單易于制造。該設計中采用了諧振式水位傳感器作為中位水箱和低位水箱中的水位檢測裝置。
紅外傳感器安裝在水龍頭內,當人手觸發傳感器時,信號傳遞給單片機。對于紅外傳感器,則利用熱釋電紅外傳感器直接接收運動人體的信號,使用574S紅外探頭。此電路只需要接收系統,不需要發射系統,通過技術處理,可以只接受運動的人體信號,比常規紅外光接收器抗干擾性強。論文大全。
4 智能節水系統主程序流程圖
系統主程序流程圖如圖4所示。設計的思路是首先初始化,讓所有芯片都恢復最開始的設置,等所有芯片都準備好了之后,則讀取E2PROM內的數據,接著進行A/D采樣,讀取水位傳感器和渾濁度傳感器采集到的數據,再對數據進行數據處理,若有數據輸入,則轉入相應的子程序并顯示水位的高度;沒有數據輸入則繼續下面的按鍵判斷。有鍵按下時,判斷是哪個按鍵按下,然后再轉入相應的子程序;若無按鍵按下,則轉回A/D采樣子程序,重復上述的程序,如此往復進行下去。
5 結束語
提出了家庭智能節水系統控制器的設計方案、硬件電路和主程序流程圖。
(1)從人性化、性價比方面綜合考慮器件的優略,為該系統的優化提供了基礎。
(2)紅外感應水龍頭、LED顯示和延時可調開關不僅方面使用,便于監控,而且方便自如的調節水流時間,達到了節約用水的目的。
(3)結構簡單,使用方便,經濟節能環保。
參考文獻
[1] 張建鋼. 模糊控制洗衣機渾濁度檢測系統[J]. 湖北工學院學報,2002(1)
[2] 肖景和、趙健 紅外線熱釋電與超聲波遙控電路[M],人民郵電出版社,2003
[3] 張 偉. 單片機原理及應用[M],機械工業出版社,2002.1
作為模擬人體感官的“電五官”(傳感器)是獵取所研究對象信息的“窗口”,它為系統提供賴以進行處理和決策所必須的對象信息,它是高度自動化系統乃至現代尖端技術必不可少的關鍵組成部分。未來的社會,將是充滿傳感器的世界。有人認為支配了傳感器技術,就能把握住新時代。因此,傳感器技術是21世紀人們在高新技術發展方面爭奪的一個制高點,各發達國家都將傳感器技術視為現代高新技術發展的關鍵。從20世紀80年代起,日本就將傳感器技術列為優先發展的高新技術之首,美國等西方國家也將此技術列為國家科技和國防技術發展的重點內容,我國從20世紀80年代以來也已將傳感器技術列入國家高新技術發展的重點。21世紀是人類全面進入信息化的時代,作為現代信息技術的三大支柱之一的傳感器技術必將有長足的發展。
“電五官”落后于“電腦”的現狀,已成為新型計算機的進一步開發和應用的一大障礙,傳感器的發展遠遠不能滿足計算機應用和開發的需要;許多有競爭力的新產品開發和卓有成效的技術改造,都離不開傳感器。如:工廠自動化中的柔性制造系統(FMS)、計算機集成制造系統(CIMS)、幾十萬千瓦的大型發電機組、連續生產的軋鋼生產線、無人駕駛的自動化汽車、多功能裝備指揮系統、直至宇宙飛船或各種探測器等等,其開發與傳感器密不可分;傳感器的應用提高了機器設備的自動化程度,提高了產量和質量,產生了巨大的經濟效應。同時,推動了科學技術的進步,促進了生產力的發展,產生了巨大的社會效應;傳感器普及于社會各個領域,從茫茫太空到浩瀚海洋、從各種復雜的工程系統到日常生活的衣食住行,將造成良好的銷售前景。這些都是傳感器技術發展的強大動力,隨著現代科學技術,特別是大規模集成電路技術的飛速發展和電腦的普及,傳感器在新的技術革命中的地位和作用將更為突出,一股競相開發和應用傳感器的熱潮已在世界范圍內掀起。
目前的傳感器,無論在數量上、質量上和功能上,遠遠不適應社會多方面發展的需要。當前,人們在充分利用先進的電子技術條件,研究和采用合適的外部電路以及最大限度地提高現有傳感器的性能價格比的同時,正在尋求傳感器技術發展的新途徑。特別是電子設計自動化(EDA)、計算機輔助制造(CAM)、計算機輔助測試(CAT)、數字信號處理(DSP)、專用集成電路(ASIC)及表面貼裝技術(SMT)等技術的發展,極大地加速了傳感器技術的發展。下面探討傳感器發展的新趨勢:
1.開發新型傳感器
鑒于傳感器的工作機理是基于物理學、化學等各種效應和定律,由此啟發人們進一步探索具有新效應的敏感材料,并以此研制出具有新原理的新型物性型傳感器,這是發展高性能、多功能、低成本和小型化傳感器的重要途徑。目前發展最迅速的新材料是半導體、陶瓷、光導纖維、磁性材料以及所謂的“智能材料”(如形狀記憶合金,具有自增殖功能的生物體材料等)。如日本夏普公司利用超導技術研制成功高溫超導磁傳感器,是傳感器技術的重大突破。其靈敏度比霍爾器件高,僅次于超導量子干涉器件,而其制造工藝遠比超導量子干涉器件簡單。它可用于磁成像技術,具有廣泛推廣價值。此外,當前控制材料性能的技術已取得長足的進步,不久的將來人們將可按照傳感要求來合成所需的材料。其中,利用量子力學諸效應研制的高靈敏閾傳感器,用來檢測極微信號,是傳感器發展的新方向之一。
2.結構型傳感器的發展
結構型傳感器主要向高穩定性、高可靠性和高精度方向發展。論文參考。目前,結構型傳感器在國防和工業控制等領域還大量使用,但其在原理、材料和結構形式等方面都不斷發生變化,并且向有源化方向發展,即將敏感元件和電路組裝在一起,減小裝置體積,提高信噪比和精度。結構型傳感器由于采用新結構、新材料和新工藝,可大幅提高傳感器的性能。如采用微細加工技術(半導體技術中氧化、光刻、擴散、沉積、平面電子工藝、各向異性腐蝕以及蒸鍍、濺射薄膜等加工工藝),可制造出各式各樣的新型傳感器。
3.傳感器的集成化和多功能化
傳感器的集成化分為傳感器本身的集成化和傳感器與后續電路的集成化。前者是在同一芯片上,或將眾多同一類型的單個傳感器件集成為一維線型、二維陣列(面)型傳感器,使傳感器的檢測參數由點到面到體多維圖像化,甚至能加上時序,變單參數檢測為多參數檢測;后者是將傳感器與調理、補償等電路集成一體化,使傳感器由單一的信號變換功能,擴展為兼有放大、運算、干擾補償等多功能——實現了橫向和縱向的多功能。如日本豐田研究所開發出同時檢測Na+、K+和H+等多種離子的傳感器。這種傳感器的芯片尺寸為2.5mm×0.5mm,僅用一滴液體,如一滴血液,即可同時快速檢測出其中Na+、K+和H+的濃度,對醫院臨床非常方便實用。
目前集成化傳感主要使用硅材料,它可以制作電路,又可制作磁敏、力敏、溫敏、光敏和離子敏器件。在制作敏感元件時要采用單硅的各向同性和各向異性腐蝕、等離子刻蝕 、離子注入等工藝,利用微機械加工技術在單晶硅上加工出各種彈性元件。當今,發達國家正在把傳感器與電路集成在一起進行研究。
4.傳感器的智能化
將傳統的傳感器和微處理器及相關電路組成一體化的結構,就是傳感器的智能化。智能傳感器具有自校準、自補償、自診斷、數據處理、雙向通信、信息存儲和記憶、數字信號輸出等功能。智能傳感器按其結構分為模塊式、混合式和集成式三種。模塊式智能傳感器是初級的,是由許多互相獨立的模塊組成,其集成度不高、體積較大,但比較實用;混合式智能傳感器是將傳感器、微處理器和信號處理電路制作在不同的芯片上。目前,其作為智能傳感器的主要類型而被廣泛應用;集成式智能傳感器是將一個或多個敏感元件與微處理器、信號處理電路集成在同一芯片上,其結構一般是三維器件(立體器件),具有類似于人的五官與大腦相結合的功能,并且智能化程度隨著集成化程度的提高而不斷提高。如美國圖尼爾公司的ST—3000型智能傳感器,采用半導體工藝,在同一芯片上制作CPU,EPROM和靜壓、壓差、溫度等三種敏感元件。論文參考。另外還有MEMS,MEMS通常是由傳感器、信息單元、執行器和通信/接口單元等組成。它可從需要觀測與控制的對象中獲取光、聲、壓力、溫度等信息,轉換成電信號并要求處理、提取信息,通過執行器對目標實施控制或顯示;同時,系統通過通信/接口單元以光、電或磁的形式與其它微系統保持信息聯系。
今后,隨著傳感器技術的發展,還將研制出更高級的集成式智能傳感器,它完全可以做到將檢測、邏輯和記憶等功能集成在一塊半導體芯片上。同時,冷卻部分也可以制作在立體電路中,利用帕耳帖效應使電路進行冷卻。目前,集成式智能傳感技術正在起飛,它勢必在未來的傳感器技術中發揮重要的作用。
5.傳感器的虛擬化和網絡化
5.1虛擬化。自20世紀90年代以來,一種全新概念“虛擬化”正獲得愈來愈廣泛的應用。虛擬傳感器是傳感器、計算機和軟件這三者的有機結合,構成軟硬結合、實虛共體的新一代傳感器。這種傳感器是基于計算機平臺并且完全通過軟件開發而成,利用軟件來建立傳感器模型、標定參數及標定模型,以實現最佳性能指標。如美國B&K公司最近已開發一種基于軟件設置的TEDS型虛擬傳感器,其主要特點是每只傳感器都有唯一的產品序列號并附帶一張軟盤,軟盤上存儲著該傳感器進行標定的有關數據。使用時,傳感器通過數據采集器接至計算機,首先從計算機輸入該傳感器的產品序列號,再從軟盤上讀出有關數據,然后自動完成對傳感器的檢查,傳感器參數的讀取、傳感器設置和記錄工作。此外,專供開發虛擬傳感器產品的軟件工具也已面市了。
5.2網絡化。網絡傳感器是包含數字化傳感器、網絡接口和處理單元的新一代智能傳感器。這里講的網絡已不限于傳感器總線,還應包括現場總線、局域網和因特網。數字傳感器首先將被測參數轉換成數字量,再送給微處理器做數據處理,最后將測量結果傳輸給網絡,以便實現各傳感器之間、傳感器與執行器之間,傳感器與系統之間的數據交換及資源共享。
6.研究生物感官,開發仿生傳感器
大自然是生物傳感器的優秀設計師。它通過漫長的歲月,不僅造就了集多種感官于一身的人類本身,而且還設計了許許多多的功能奇特、性能高超的生物傳感器。如狗的嗅覺(靈敏閾為人的10 倍);鳥的視覺(視力為人的8~50倍);蝙蝠、海豚的聽覺(主動型生物雷達——超聲波傳感器);蛇的接近覺(分辯率達0.001℃的紅外測溫傳感器)等等.這些生物的感官性能,是當今傳感器技術所望塵莫及的.研究它們的機理,開發仿生傳感器(包括視覺、聽覺、嗅覺、味覺、觸覺傳感器等),也是引人注目的方向。目前只有視覺與觸覺傳感器得到了比較好的發展。
傳感器技術在廣泛應用于工業自動化、軍事國防和以宇宙開發為代表的尖端科學與工程等重要領域的同時,正以自己的巨大 力,向著與人們生活密切相關的方面滲透。論文參考。現代科學技術的飛速發展以及社會對高性能、高適用性傳感器的迫切需要,極大地推動了傳感器技術的發展。生物工程、醫療衛生、環境保護、安全防范、家用電器等方面的傳感器已層出不窮,并在日新月異地發展。我們有理由相信,傳感器這顆璀璨的明珠,必將放射出更加耀眼的光芒。
參考文獻:
〔1〕 單成祥.傳感器的理論與設計基礎及其應用〔M〕.北京:國防工業出版社,1999。
〔2〕 何希才.傳感器及其應用電路〔M〕.北京:電子工業出版社,2001。
〔3〕 黃長藝.機械工程測試技術基礎〔M〕.北京:機械工業出版社,2001。
〔4〕 王元慶.新型傳感器原理及應用〔M〕.北京:機械工業出版社,2002。
〔5〕 沙占友.智能化集成溫度傳感器原理及應用〔M〕.北京:機械工業出版社,2002
生產實踐表明測量裝置失效是導致連續工業過程控制間斷的重要因素之一[1]。因此,對連續工業過程進行傳感器置信度評估尤為重要。目前常用的方法有貝葉斯估計法、DS證據推理法、自適應神經網絡模糊推理方法(ANFIS)和人工免疫網絡法等[2,3]。其中,連續生產過程中的物質能量流模型和人工免疫網絡傳播模型相類似,所以利用這種關系進行傳感器置信度評估已成為近年來自動化領域研究的熱點。目前基于人工免疫網絡的傳感器置信度評估方法主要有:以Ishida為代表的動態識別免疫網絡和以Leonard M.Adleman為代表的基于DNA的陰性選擇[4-6]。而前者已成功地應用于水泥生產過程的設備傳感器置信度評估。但是Ishida動態識別方法中只能處理傳感器關系確定的情況。因此,本文引入了傳感器關系的非確定性約束,用于連續生產過程傳感器之間為非確定關系情況下的傳感器置信度評估。
1 傳感器置信度評估算法Ishida動態識別免疫網絡是在N.K.Jerne系統級識別方法基礎上提出的。N.K.Jerne認為在免疫網絡理論中,免疫系統由識別集合組成,識別集合中的一些抗原可以被其他抗原激活,并產生抗體;而這些抗體又可以激活其他的抗原。通過這種方式,刺激可以從一個抗原傳播到另外一個抗原,直至影響整個網絡。對刺激信號的辨識不是一個抗原單獨完成的,而是通過抗原相互連接的網絡進行的[7,8]。Ishida動態識別免疫網絡方法利用傳感器之間的約束條件為每個傳感器建立測試單元。在用動態識別免疫網絡進行傳感器置信度評估時,網絡主體與傳感器相對應,免疫細胞的濃度與傳感器的可靠性相對應,網絡平衡狀態與傳感器正常狀態相對應,外部刺激信號和測試單元的測試結果相對應。因此,這個網絡中的每一個傳感器不僅測量工業過程的物理量,還要評估其他傳感器的可靠性。在同一工業過程中,溫度、壓力、流量等傳感器的測量值之間既互相獨立又互相聯系;只要利用簡單的工業過程知識就能建立起這些傳感器之間具有確定性的約束,所以這種方法實現起來較為簡單。這種模型可用圖1的結構表示。圖1 動態人工免疫網絡圖中是一個包含n個節點的人工免疫網絡Nais(p(i)ais),i =1,…,n。其中p(i)ais是網絡的第i個節點, p(i)ais= {Aais,I(1)ais,I(2)ais,…,I(m)ais},Aais表示網絡中的抗體,I(i)ais表示第i個抗體的獨特位。在Ishida的方法中,p(i)ais與工業現場中的第i個傳感器的邏輯位置相對應,抗體Aais與傳感器實體相對應,抗體Aais的濃度與傳感器的可信度對應,獨特位I(1)ais,I(2)ais,…,I(m)ais對應m個測試單元。對Aais(Aais∈p(i)ais)的刺激由第i個傳感器和其他傳感器建立的測試單元對應的獨特位I(1)ais,I(2)ais,…,I(m)ais產生。但是,測試單元存在如下缺點[3]:測試單元的結果只能用0,1,-1來表示,不能利用人工經驗等一些非確定知識。針對這些缺點本文進行了改進,設計了新型的測試單元。針對Ishida測試單元存在的不足,本文設計了模糊測試單元,使其能夠反應傳感器數值間的非確定性關系。在動態識別免疫網絡中,獨特位Iais實際上就是傳感器數值Sj和Sk的關系的體現,而這種關系用在模糊論域可分為5個等級:{Sj小于Sk,Sj小于等于Sk,Sj在Sk的附近變化,Sj大于等于Sk,Sj大于Sk}。Sj和Sk之間的模糊關系則代表了動態識別免疫網絡中抗體之間刺激的強度。設在t時刻,抗體Aais對應的傳感器j通過獨特位I(jk)ais收到來自k傳感器的刺激為I(jk)ais(t),則其隸屬度為I(jk)ais(t) =∪5l=112πσaisle-(sj-sk-μaisl)22σ2aisl(1)式中I(jk)ais(t)∈(0,1),兩個數列之間的關系是互易的,所以I(jk)ais(t)=I(kj)ais(t);ηaisl,σaisl(l=1,2,3,4,5)是不同等級的隸屬度函數的中的常數,由Sj和Sk之間的統計關系決定。由外部刺激引起抗體濃度ri產生變化,可表示為dr(i)aisdt=∑nj=1R(i)aisI(ij)ais∑ni=1R(i)aisξais+r(i)ais(1-ξais) (2)R(i)ais=2arctan(qais·r(i)ais)π(1-Rd)+Rd(3)式中Rd∈(0,1),經驗值取0.001;R(i)ais表示節點p(i)ais對應的第i個傳感器的可信度,R(i)ais越大,傳感器的可信度越高,由于qais·rais>0,所以Rais∈(Rd,1);ξais為靈敏度系數;qais是網絡平衡狀態的調節系數,主要作用是傳感器網絡在正常時的可信度調節在一個合適的范圍內。
轉貼于 2 參數確定的方法在本算法中,需要確定的參數有兩類:一類是式(1)影響對獨特位刺激程度的參數μais和σais,另一類是影響網絡平衡狀態的參數ξais和qais。參數μais和σais主要表征了和獨特位對應的測試單元中兩個傳感器之間的關系。這種關系通常是生產工藝所要求的(或者工業過程特性決定的)。要確定參數μais和σais,首先要獲取這兩個傳感器大量的現場數據,然后以它們相同時刻測量值的差作為樣本。μais是該樣本的正態分布的均值,σais是該樣本的正態分布的均方差。參數ξais和qais影響網絡的平衡狀態,如圖2所示。從圖中可以看出:ξais越大,網絡對外界的反映就越靈敏,但容易產生誤報。qais越大Rais正常狀態下就越大;但是,qais過大會造成測量失效狀態下的可信度變大,容易發生漏報。參數ξais和qais可以通過學習得到。在傳感器正常工作狀態下,qais可通過以下公式得到qais(t+1) = qais(t)+αais(Rais-R0) (4)式中αais為步長系數;R0為qais調節時傳感器正常狀態下置信度的平均值,一般可取0.7。在某個時刻,1732傳 感 技 術 學 報2008年能比較試驗。ANFIS結構如圖4所示,酵罐三個溫度傳感器,兩個作為輸入,另外一個作為輸出,對傳感器輸入值的隸屬度劃分為兩個區間:正常和異常。經過訓練以后和分別對應于兩個輸入傳感器的“標準可信度”。圖4 ANFIS的結構例如,當對于罐頂傳感器的置信度評估時,建立2個ANFIS:ANFIS-1:輸入為罐頂傳感器和罐中部傳感器,輸出為罐底傳感器,w(1)top表征罐頂傳感器的置信度。ANFIS-2:輸入為罐頂傳感器和罐底傳感器,輸出為罐中部傳感器,w(2)top表征罐頂傳感器的置信度。那么,罐頂傳感器的置信度為w(1)top和w(2)top的平均值。其余兩個傳感器的評估方法也同樣。AN-FIS實驗使用和人工免疫網絡實驗相同的數據,數據窗口大小為30 ks。由于兩個實驗中的置信度沒有可比性,人工免疫網絡算法中的置信度來源于人工經驗,ANFIS的標準的可信度來源于歸一化的權系數。因此,論文比較的是:傳感器“故障”引起的其置信度變化率ηt,ηt=| Rm-Ra|Rm(6)式中:Rm表示正常狀態下的置信度,Ra表示異常情況下的置信度。對比實驗的結果如表2所示,從中可以看出,兩種方法結果是一致的,而當偏差數據較大時,ANFIS方法ηt的較大,對故障數據比較敏感,在偏差較小時,人工免疫網絡算法的ηt較大,對故障數據比較敏感。因此,人工免疫網絡算法適用的數值范圍更廣一些。表2 對比實驗的ηt結果傳感器偏差數據/℃人工免疫網絡方法ANFIS方法罐頂傳感器-0.50 34.6% 57.7%罐中部傳感器-0.30 18.1% 4.8%罐底傳感器-0.15 6.4% 0.2%
3 結論論文研究了連續過程中傳感器具有非確定關系情況下的傳感器置信度評估。實驗證明:①具有模糊測試單元的人工免疫網絡能夠使用人工經驗對傳感器的數據置信度進行評估;②具有模糊測試單元的參數物理意義明顯、確定方法簡單易行。但是,論文中的算法在某些情況下抗干擾能力較弱。例如,圖3(c)所示情況應用單條件的閥值比較的方法輸出的結果不穩定,論文將用復合的判決條件的方法在此深入研究。
參考文獻
[1] 李雄杰,周東華,陳良光.一類非線性時滯過程的傳感器主動容錯控制[J].傳感技術學報,2007,20(5):980-984.
[2] 房方,魏樂.傳感器故障的神經網絡信息融合診斷方法[J].傳感技術學報,2000,13(4):272-276.
[3] 趙志剛,趙偉.基于動態不確定度理論的多傳感器系統傳感器失效檢測方法[J].傳感技術學報, 2006, 19(6): 2723-2736.
[4] Mizessyn F,Ishida Y.Immune Networks for Cement Plants[C]// IEEE: International Symposium on Autonomous Decen-tralized Systems. IEEE, 1993.282-288.
[5] Costa Branco P J.Using Immunology Principles for Fault De-tection[J],IEEE Transactions on Industrial Electronics, 2003,50(2):362-373.
0引言
血壓是人體重要的生理參數之一,對其進行精確測量,有利于早期發現和鑒別高血壓類型醫學檢驗論文,提出合理的治療建議。目前,臨床上對普通病人主要采用無創檢測的方法,它大致分為人工柯氏音法和示波法兩類,人工柯氏音法雖然比較準確,但操作困難,受主觀因素影響較大,而示波法雖然操作簡單醫學檢驗論文,但穩定性和個體適應性都比較差,不利于其在臨床應用上的普及和推廣。本文在示波法的基礎上,從硬件實現和軟件設計兩個方面,改進了原來的測量方法,并進行了比對測試
在研究國內外已有產品或設計構思的基礎上,使用先進的信號處理技術與智能控 制技術,盡量消除脈搏提取處理中的噪聲干擾與非線性失真醫學檢驗論文,提高血壓測量的準確性與穩定性,并提高了測量的自動化和智能化論文開題報告。
1系統的硬件設計